




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学一、集合1、集合学习中的“注意事项”2、集合问题解法面面观二、函数1、函数定义域、值域求法综合2.、函数奇偶性与单调性问题的解题策略 3、恒成立问题的求解策略 4、反函数问题的“不求”艺术 5.、反函数的几种题型及方法 6、二次函数根的问题一题多解 三、空间几何1、线线、线面、面面位置关系判别方法综合2、面积、体积求法综合四、平面向量1、向量易错点、易混点例析2、解平面向量题的方法技巧3、一道向量题的多角度分析五、三角函数1、善于用“1“巧解题2、三角问题的非三角化解题策略3、三角函数有界性求最值解题方法4、三角函数向量综合题例析5、三角函数中的数学思想方法六、学习方法1、数学试题中信息的收集加工处理2、选择题快速解答大题小作3、转化思想在解题中的应用4、善于对比、勤于反思、富于联想 -数: 1.集合 注意集合的互译性,解题大都会用到 例:已知A=x/x2-2x-8=0;B=x/x2+ax+a2-12=0,若ABA,求a的范围 解:x2-2x-8=0 (x+2)(x-4)=0 x1=4;x2=-2 设:AB=A (1)B=空集 b2-4ac0 a4 (2)B=4 得a=-2 b2-4ac0 舍去 (3)B=-2 得a=4,-2 b2-4ac应等于0 a=4 (4)B=4,-2 得a=-2 因为ABA 综上所述:-4,-2)(-2,-4) 2.函数 函数三要素:1.定义域2.值域3.对应法则f 例:研究y=ax2+bx+c的单调性 (1)若a0 则单调增区间为:-b/2a,+) 单调减区间为: (-,-b/2a (2) 若a2的解集是x?R| x-32或x| x-324、集合的分类:1有限集 含有有限个元素的集合2无限集 含有无限个元素的集合3空集 不含任何元素的集合 例:x|x2=5二、集合间的基本关系1.“包含”关系子集注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2“相等”关系(55,且55,则5=5)实例:设 A=x|x2-1=0 B=-1,1 “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B 任何一个集合是它本身的子集。AA真子集:如果AB,且A1 B那就说集合A是集合B的真子集,记作A B(或B A)如果 AB, BC ,那么 AC 如果AB 同时 BA 那么A=B3. 不含任何元素的集合叫做空集,记为规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。三、集合的运算1交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集记作AB(读作”A交B”),即AB=x|xA,且xB2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:AB(读作”A并B”),即AB=x|xA,或xB3、交集与并集的性质:AA = A, A= , AB = BA,AA = A,A= A ,AB = BA.4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作: CSA 即 CSA =x | x?S且 x?ASCsAA(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。(3)性质:CU(C UA)=A (C UA)A= (CUA)A=U二、函数的有关概念1函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数记作: y=f(x),xA其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)| xA 叫做函数的值域注意:2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3 函数的定义域、值域要写成集合或区间的形式定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零 (6)实际问题中的函数的定义域还要保证实际问题有意义.(又注意:求出不等式组的解集即为函数的定义域。)构成函数的三要素:定义域、对应关系和值域再注意:(1)构成函数三个要素是定义域、对应关系和值域由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:表达式相同;定义域一致 (两点必须同时具备)(见课本21页相关例2)值域补充(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数 y=f(x) , (xA)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x A)的图象C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 即记为C= P(x,y) | y= f(x) , xA 图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。(2) 画法A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来.B、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3)作用:1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。提高解题的速度。发现解题中的错误。4快去了解区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示5什么叫做映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作“f:A B”给定一个集合A到B的映射,如果aA,bB.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象说明:函数是一种特殊的映射,映射是一种特殊的对应,集合A、B及对应法则f是确定的;对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;对于映射f:AB来说,则应满足:()集合A中的每一个元素,在集合B中都有象,并且象是唯一的;()集合A中不同的元素,在集合B中对应的象可以是同一个;()不要求集合B中的每一个元素在集合A中都有原象。常用的函数表示法及各自的优点:1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征注意啊:解析法:便于算出函数值。列表法:便于查出函数值。图象法:便于量出函数值补充一:分段函数 (参见课本P24-25)在定义域的不同部分上有不同的解析表达式的函数。在不同的范围里求函数值时必须把自变量代入相应的表达式。分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集补充二:复合函数如果y=f(u),(uM),u=g(x),(xA),则 y=fg(x)=F(x),(xA) 称为f、g的复合函数。例如: y=2sinX y=2cos(X2+1)7函数单调性(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1x2时,都有f(x1)f(x2),那么就说f(x)在区间D上是增函数。区间D称为y=f(x)的单调增区间(睇清楚课本单调区间的概念)如果对于区间D上的任意两个自变量的值x1,x2,当x1x2 时,都有f(x1)f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.、注意:1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;2 必须是对于区间D内的任意两个自变量x1,x2;当x1x2时,总有f(x1)f(x2) 。(2) 图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法:1 任取x1,x2D,且x11,且 *当 是奇数时,正数的 次方根是一个正数,负数的 次方根是一个负数此时, 的 次方根用符号 表示式子 叫做根式(radical),这里 叫做根指数(radical exponent), 叫做被开方数(radicand)当 是偶数时,正数的 次方根有两个,这两个数互为相反数此时,正数 的正的 次方根用符号 表示,负的 次方根用符号 表示正的 次方根与负的 次方根可以合并成 ( 0)由此可得:负数没有偶次方根;0的任何次方根都是0,记作 。注意:当 是奇数时, ,当 是偶数时, 2分数指数幂正数的分数指数幂的意义,规定: 0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂3实数指数幂的运算性质(1) ;(2) ;(3) (二)指数函数及其性质1、指数函数的概念:一般地,函数 叫做指数函数(exponential ),其中x是自变量,函数的定义域为R注意:指数函数的底数的取值范围,底数不能是负数、零和12、指数函数的图象和性质a1 0a1 0a1 图象特征 函数性质 函数图象都在y轴右侧 函数的定义域为(0,) 图象关于原点和y轴不对称 非奇非偶函数 向y轴正负方向无限延伸 函数的值域为R 函数图象都过定点(1,0) 自左向右看,图象逐渐上升 自左向右看,图象逐渐下降 增函数 减函数 第一象限的图象纵坐标都大于0 第一象限的图象纵坐标都大于0 第二象限的图象纵坐标都小于0 第二象限的图象纵坐标都小于0(三)幂函数1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数2、幂函数性质归纳(1)所有的幂函数在(0,+)都有定义,并且图象都过点(1,1);(2) 时,幂函数的图象通过原点,并且在区间 上是增函数特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;(3) 时,幂函数的图象在区间 上是减函数在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程咨询服务创新创业项目商业计划书
- 星空风格浴场景创新创业项目商业计划书
- 尿酸痛风药物创新创业项目商业计划书
- 海洋渔业质量安全追溯体系创新创业项目商业计划书
- 大豆蛋白棒生产创新创业项目商业计划书
- 录音电话创新创业项目商业计划书
- 宠物领养家庭支持网络创新创业项目商业计划书
- 经典诗歌《回延安》教学全案解析
- 人防工程维护保养操作规程
- 2025年德州工勤考试试题及答案
- 脚手架临时开口加固方案
- 华为公司考勤管理制度
- 《水利工程白蚁防治技术规程SLT 836-2024》知识培训
- 网络言论自我管理主题班会
- 中小学资助工作宣传与培训计划
- 2025年云南空港百事特商务有限公司招聘笔试参考题库含答案解析
- 向量的数量积说课
- 油气开采技术进步与挑战-洞察分析
- 小学生兴趣英语课件
- 【MOOC】国际金融学-湖南大学 中国大学慕课MOOC答案
- 九年级化学人教版基于特定需求设计和制作简易供氧器(教学设计)
评论
0/150
提交评论