




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2010 年高考数学 理科 上海试题 班级 学号 姓名 一 填空题一 填空题 本大题满分 56 分 每小题 4 分 1 不等式 2 0 4 x x 的解集是 2 若复数12zi i 为虚数单位 则z zz 3 若动点P到点 2 0 F的距离与它到直线20 x 的距离相等 则P的轨迹方程为 4 行列式 cossin 36 sincos 36 的值是 5 圆 22 2440C xyxy 的圆心到直线3440 xy 的距离d 6 随机变量 的概率分布率由下图给出 x 7 8 9 10 px 0 3 0 35 0 2 0 15 则随机变量 的均值是 7 2010 年上海世博会园区每天 9 00 开园 20 00 停止入园 在右边的框 图中 S 表示上海世博会官方网站在每个整点报道的入园总人数 a 表 示整点报道前 1 个小时内入园人数 则空白的执行框内应填入 8 对任意不等于1的正数a 函数 log 3 a f xx 的反函数的图像都 过点P 则点P的坐标是 9 从一副混合后的扑克牌 52 张 中随机抽取 1 张 事件A为 抽得红 桃K 事件B为 抽得黑桃 则概率 p AB 结果用最简分数表示 10 在 n 行 n 列矩阵 12321 23411 34512 12321 nnn nn n nnnn 中 记位于第i行第j列的数为 1 2 ij a i jn 当9n 时 11223399 aaaa 11 将直线 2 0lnxyn 3 0lxnyn nN 2n x轴 y轴围成的封闭图形的面积 否 是 开始 T 9 S 0 输出 T S T 19 T T 1 输入 a 结束 第 7 题图 记为 n S 则lim n n S 12 如图所示 边长为 的正方形纸片 ABCD 中 AC 与 BD 相交于 O 剪去AOB 将剩余部分沿 OC OD 折叠 使 OA OB 重合 则以 A B C D O 为顶点的 四面体的体积为 13 如图所示 直线2x 与双曲线 2 2 1 4 x y 的渐近线交于 12 E E 两点 记 1122 OEe OEe 任取 双曲线 上的点 P 若 12 OPaebe a b R 则 a b 满足的一个等式是 14 从集合 Ua b c d 的子集中选出 个不同的子集 需同时满足 以下两个条件 U 都要选出 对选出的任意两个子集 A B 必有AB 或BA 则共有 种不同的选法 二 选择题二 选择题 本大题满分 20 分 每小题 5 分 15 2 4 xkkZ 是 tan1x 成立的 答 A 充分不必要条件 B 必要不充分条件 C 充分条件 D 既不充分也不必要条件 16 直线l的参数方程为 1 2 2 xt tR yt 则l的方向向量d 可以是 答 A B C 2 D 2 17 若 0 x是方程 1 3 1 2 x x 的解 则 0 x属于区间 答 A 2 3 1 B 1 2 2 3 C 1 3 1 2 D 0 1 3 18 某人要制作一个三角形 要求它的三条高的长度分别为 11 1 13 11 5 则此人能 答 A 不能做出这样的三角形 B 做出一个锐角三角形 C 做出一个直角三角形 D 做出一个钝角三角形 第 12 题图 第 13 题图 三 解答题三 解答题 本大题满分 74 分 19 本题满分 12 分 19 本题满分 12 分 已知0 2 x 化简 2 lg costan12sin lg 2cos lg 1 sin2 24 x xxxx 20 本题满分 13 分 本题共有 2 个小题 第一个小题满分 5 分 第 2 个小题满分 8 分 20 本题满分 13 分 本题共有 2 个小题 第一个小题满分 5 分 第 2 个小题满分 8 分 已知数列 n a的前n项和为 n S 且585 nn Sna nN 1 证明 1 n a 是等比数列 2 求数列 n S的通项公式 并求出n为何值时 n S取得最小值 并说明理由 21 本大题满分 13 分 本题共有 2 个小题 第 1 小题满分 5 分 第 2 小题满分 8 分 21 本大题满分 13 分 本题共有 2 个小题 第 1 小题满分 5 分 第 2 小题满分 8 分 如图所示 为了制作一个圆柱形灯笼 先要制作 4 个全等的矩形骨架 总计耗用 9 6 米铁丝 再用S平 方米塑料片制成圆柱的侧面和下底面 不安装上底面 1 当圆柱底面半径r取何值时 S取得最大值 并求出该 最大值 结果精确到 0 01 平方米 2 在灯笼内 以矩形骨架的顶点为点 安装一些霓虹灯 当灯笼 的底面半径为 0 3 米时 求图中两根直线 1335 A BA B所在异面 直线所成角的大小 结果用反三角函数表示 22 本题满分 18 分 本题共有 3 个小题 第 1 小题满分 3 分 第 2 小题满分 5 分 第 3 小题满分 10 分 22 本题满分 18 分 本题共有 3 个小题 第 1 小题满分 3 分 第 2 小题满分 5 分 第 3 小题满分 10 分 若实数x y m满足xmym 则称x比y远离m 1 若 2 1x 比 1 远离 0 求x的取值范围 2 对任意两个不相等的正数a b 证明 33 ab 比 22 a bab 远离2ab ab 3 已知函数 f x的定义域 24 k Dx xkZ xR 任取xD f x等于sin x和cosx中 远离 0 的那个值 写出函数 f x的解析式 并指出它的基本性质 结论不要求证明 23 本题满分 18 分 本题共有 3 个小题 第 1 小题满分 3 分 第 2 小题满分 6 分 第 3 小题满分 9 分 23 本题满分 18 分 本题共有 3 个小题 第 1 小题满分 3 分 第 2 小题满分 6 分 第 3 小题满分 9 分 已知椭圆 的方程为 22 22 1 0 xy ab ab 点P坐标为 a b 1 若直角坐标平面上的点M 0 Ab 0 B a满足 1 2 PMPAPB 求点M的坐标 2 设直线 11 lyk xp 交椭圆 于C D两点 交直线 22 lyk x 于点E 若 2 12 2 b k k a 证明 E为CD的中点 3 对于椭圆 的点 cos sin 0 Q ab 如果椭圆 上存在不同的两个交点 1 P 2 P 满足 12 PPPPPQ 写出求作点 1 P 2 P的步骤 并求出使 1 P 2 P存在的 的取值范围 上海 2010 年高考数学 理科 试题详解详析 上海市高境第一中学 王大平 wdpfox 一 填空题一 填空题 本大题满分 56 分 每小题 4 分 1 不等式 2 0 4 x x 的解集是 析 解集为 2 4 2 4 2 0 4 2 00 4 x xxxx x 2 若复数12zi i 为虚数单位 则z zz 析 2 51262z zzzzii 3 若动点P到点 2 0 F的距离与它到直线20 x 的距离相等 则P的轨迹方程为 析 由抛物线定义得 焦点为 2 2 0 48Fpyx 4 行列式 cossin 36 sincos 36 的值是 析 cossin 36 cos 0 36 sincos 36 或直接代值计算 5 圆 22 244 0C xyxy 的圆心到直线3440 xy 的距离d 析 圆心为 22 314 24 3 3 2 5 1 d 6 随机变量 的概率分布率由下图给出 x 7 8 9 10 px 0 3 0 35 0 2 0 15 则随机变量 的均值是 析 随机变量 的均值为70 380 3590 2100 158 2 7 2010 年上海世博会园区每天 9 00 开园 20 00 停止入园 在右边的框 图中 S 表示上海世博会官方网站在每个整点报道的入园总人数 a 表 示整点报道前 1 个小时内入园人数 则空白的执行框内应填入 析 SSa 否 是 开始 T 9 S 0 输出 T S T 19 T T 1 输入 a 结束 第 7 题图 8 对任意不等于1的正数a 函数 log 3 a f xx 的反函数的图像都 过点P 则点P的坐标是 析 函数 log 3 a f xx 的图像恒过点 2 0 由互为反函数的 图像的关系知 点P的坐标是 0 2 9 从一副混合后的扑克牌 52 张 中随机抽取 1 张 事件A为 抽得红桃K 事件B为 抽得黑桃 则概率 p AB 结果用最简分数表示 析 事件A 事件B为两个独立事件 所以有 1137 525226 p ABp Ap B 10 在 n 行 n 列矩阵 12321 23411 34512 12321 nnn nn n nnnn 中 记位于第i行第j列的数为 1 2 ij a i jn 当9n 时 11223399 aaaa 析 矩阵中的元素经过9次元素的轮换 主对角线上的元素 轮遍 了9个数字 故 11223399 12945aaaa 也可将矩阵完整列出 再计算 11 将直线 2 0lnxyn 3 0lxnyn nN 2n x轴 y轴围成的封闭图形的面积记为 n S 则lim n n S 析 依题意 封闭图形如图所示 直线 2 0lnxyn 3 0lxnyn nN 2n 恒过定点 1 0 0 1 且其交点为 11 nn P nn nN 2n 当n 三角形的第三个顶点无限接近 1 1 即limlim 1 nAOBABPAOBP nn SSSS 12 如图所示 边长为 的正方形纸片 ABCD 中 AC 与 BD 相 交于 O 剪去AOB 将剩余部分沿 OC OD 折叠 使 OA OB 重合 则以 A B C D O 为顶点的四面体的体积为 第 12 题图 析 依题意 因 AOODAOOD AOCDO BOOCAOOC 折叠后 面 故四面体 ACDO 的高为 2 42 2 2 AO 所以 28 211 1 2 2 2 2 33 23 A CDORt CDO VSAO 13 如图所示 直线2x 与双曲线 2 2 1 4 x y 的渐近线交于 12 E E两点 记 1122 OEe OEe 任取 双曲线 上的点 P 若 12 OPaebe a b R 则 a b 满足的一个等式是 析 依题意 点 P 为双曲线 2 2 1 4 x y 上的点 设 P x y 则 1122 2 1 2 1 OEeOEe 由 12 2 OPaebeab ab 得 2 abPbx ya 代入双曲线方程得 1 4 ab 14 从集合 Ua b c d 的子集中选出 个不同的子集 需同时满足以下两个条件 U 都要选出 对选出的任意两个子集 A B 必有AB 或BA 则共有 种不同的选法 析 依题意 当A为单元素集时 则B含有A中的元素外 还要含有另外三个中的一个或两个 因此有 112 433 24CCC 种选法 当A为双元素集时 则B含有A中的元素外 还要含有另 外二个中的一个 因此有 21 42 12C C 种选法 所以共有 36 种不同的选法 二 选择题二 选择题 本大题满分 20 分 每小题 5 分 15 2 4 xkkZ 是 tan1x 成立的 答 A A 充分不必要条件 B 必要不充分条件 C 充分条件 D 既不充分也不必要条件 析 2tantan 2 tan1 444 xkkZxk 充分性成立 5 4 x 满足tan1x 但不满足 2 4 xkkZ 必要性不成立 16 直线l的参数方程为 1 2 2 xt tR yt 则l的方向向量d 可以是 答 C A B C 2 D 2 第 13 题图 析 直线l的方程为 12 21 xy 所以l的方向向量d 是 2 1 也可以是 2 1 17 若 0 x是方程 1 3 1 2 x x 的解 则 0 x属于区间 答 C A 2 3 1 B 1 2 2 3 C 1 3 1 2 D 0 1 3 析 将方程变形为 1 3 1 0 2 x f xx 利用二分法原理 用计算器分别计算函数 f x在所给 区间的端点的函数值 选两者异号的区间即可 18 某人要制作一个三角形 要求它的三条高的长度分别为 11 1 13 11 5 则此人能 答 D A 不能做出这样的三角形 B 做出一个锐角三角形 C 做出一个直角三角形 D 做出一个钝角三角形 析 由三角形面积公式知 111111 13 11 5 21321125 abca b c 令13 11 5 0ak bk ck k 由 222 bca 知 角C为钝角 所以此人能做出一定是钝角三角形 三 解答题三 解答题 本大题满分 74 分 19 本题满分 12 分 19 本题满分 12 分 已知0 2 x 化简 2 lg costan12sin lg 2cos lg 1 sin2 24 x xxxx 析 原式 2 22 lg sincos lg 2 cossin lg sincos 22 xxxxxx 2 lg sincos lg sincos lg sincos 0 xxxxxx 20 本题满分 13 分 本题共有 2 个小题 第一个小题满分 5 分 第 2 个小题满分 8 分 20 本题满分 13 分 本题共有 2 个小题 第一个小题满分 5 分 第 2 个小题满分 8 分 已知数列 n a的前n项和为 n S 且585 nn Sna nN 1 证明 1 n a 是等比数列 2 求数列 n S的通项公式 并求出n为何值时 n S取得最小值 并说明理由 析 1 证明 当2n 时 111 585 1 585 651 nnnnnnn aSSnanaaa 所以有 1 1 15 6 1 5 1 16 n nn n a aa a 由 11111 1 85 514115aSaaa 即数列 1 n a 是首项 1 115a 公比为 5 6 的等比数列 2 令等比数列 1 n a 的前 n 项和为 n T 则有 1 5 15 1 65 90 90 56 1 6 5 75 1 15 6 n n nnnn n TSnSTnnnn Nn 由计算器计算14 15 16n 得 15 n 取得最小值 21 本大题满分 13 分 本题共有 2 个小题 第 1 小题满分 5 分 第 2 小题满分 8 分 21 本大题满分 13 分 本题共有 2 个小题 第 1 小题满分 5 分 第 2 小题满分 8 分 如图所示 为了制作一个圆柱形灯笼 先要制作 4 个全等的矩形骨架 总计耗用 9 6 米铁丝 再用S平 方米塑料片制成圆柱的侧面和下底面 不安装上底面 1 当圆柱底面半径r取何值时 S取得最大值 并求出该 最大值 结果精确到 0 01 平方米 2 在灯笼内 以矩形骨架的顶点为点 安装一些霓虹灯 当灯笼 的底面半径为 0 3 米时 求图中两根直线 1335 A BA B所在异面 直线所成角的大小 结果用反三角函数表示 析 1 依题意 圆柱的高 9 6 8 2 1 2 2 8 r hr 由1 2 2000 6hrr 所以 22 2 2 2 1 2 2 3 0 4 0 48 00 6 Sr hrrrr rr 当0 4r 时 2 max 1 50801 51 Sm 2 建立如图所示直角坐标系 则 1335 90 1 22 0 30 6AOAA OAh 所以 1335 0 3 0 0 0 0 3 0 6 0 0 3 0 0 3 0 0 6 ABAB 从而有 1335 0 3 0 3 0 6 0 3 0 3 0 6 A BA B 所以令直线 1335 A BA B所在异面直线所成角的大小为锐角 则有 1335 1335 cos 0 362 0 09 0 09 0 363 A BA B A BA B 所以所求异面直线所成的角的大小为 2 arccos 3 22 本题满分 18 分 本题共有 3 个小题 第 1 小题满分 3 分 第 2 小题满分 5 分 第 3 小题满分 10 分 22 本题满分 18 分 本题共有 3 个小题 第 1 小题满分 3 分 第 2 小题满分 5 分 第 3 小题满分 10 分 若实数x y m满足xmym 则称x比y远离m 1 若 2 1x 比 1 远离 0 求x的取值范围 2 对任意两个不相等的正数a b 证明 33 ab 比 22 a bab 远离2ab ab 3 已知函数 f x的定义域 24 k Dx xkZ xR 任取xD f x等于sin x和cosx中 远离 0 的那个值 写出函数 f x的解析式 并指出它的基本性质 结论不要求证明 析 1 由 22 1 0 1 0 1 1 2 2 xxx 2 332222 22 abab aba b abab ab 2222 a ab babab 2222 a ab bababa ab babab 223322 222 0 a ab babababa b b a a ab bababa ba b 其中0 0ab 因 33 0ab 比 22 0a bab 所以 33 ab 比 22 a bab 远离2ab ab 证法 2 因 222222 2 2a babab aba bb aa bb aa babab ab 3333 332233 2222 2 2abab ababababab ab 所以有 2233 2 2a babab ababab ab 2233 3322 2 2 2 0 a babab ababab ab aba bab abab 即 2233 2 2a babab ababab ab 命题得证 由 sin0 cos0 sin c 3 4 4 osxkkxZxkxx 时 sinf xx sin0 cos0 sin 44 cos xkxxxkkZx 时 cosf xx 所以 3 sin 44 cos 44 xxkk f xkZ xxkk f x图像图示参考如下 性质 1 非奇非偶函数 图像关于直线 4 xkkZ 对称 2 周期T 3 442 kkkkkZ 单调递增 3 424 kkkkkZ 单调递减 4 最大值为1 最小值为1 值域为 22 1 1 22 23 本题满分 18 分 本题共有 3 个小题 第 1 小题满分 3 分 第 2 小题满分 6 分 第 3 小题满分 9 分 23 本题满分 18 分 本题共有 3 个小题 第 1 小题满分 3 分 第 2 小题满分 6 分 第 3 小题满分 9 分 已知椭圆 的方程为 22 22 1 0 xy ab ab 点P坐标为 a b 1 若直角坐标平面上的点M 0 Ab 0 B a满足 1 2 PMPAPB 求点M的坐标 2 设直线 11 lyk xp 交椭圆 于C D两点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 餐饮店员工劳动合同及社会保险协议
- 车辆煤炭运输与智能调度系统合同
- 特色餐厅转让合同:包含品牌、门店、经营许可等
- 商场物业维修协议书范本
- 节能环保彩钢活动房施工安装及安全协议
- 汽车安全保险业务合作协议书
- 《个人借款还款计划及欠条保管责任合同》
- 拆迁补偿款提取与二手房交易资金监管服务合同
- 3D打印桥台模型校验
- 国网可研编写培训
- 16J914-1 公用建筑卫生间
- 2023年山西万家寨水务控股集团有限公司招聘笔试题库及答案解析
- 数码照片档案管理夏2014
- GB/T 19249-2003反渗透水处理设备
- 2023年德阳市旌阳区广播电视台(融媒体中心)招聘笔试题库及答案解析
- 小学生职业生涯规划启蒙课件PPT
- 钻井安全操作规范
- 食用菌生产技术 大球盖菇栽培技术课件
- 花城版小学二年级音乐(下)全册教案
- 小班语言课《水果歌》PPT
- TSG11-2020 锅炉安全技术规程
评论
0/150
提交评论