中考复习动态问题.doc_第1页
中考复习动态问题.doc_第2页
中考复习动态问题.doc_第3页
中考复习动态问题.doc_第4页
中考复习动态问题.doc_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

动态问题动态问题1、 选择题1(2013江苏苏州,10,3分)如图,在平面直角坐标系中,RtOAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,),点C的坐标为(,0),点P为斜边OB上的一动点,则PAPC的最小值为( )ABCD22(2013山东临沂,14,3分)如图,正方形ABCD中,AB8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动设运动时间为t(s),OEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为( )ABCDEOFOOOOt/st/st/st/sS/cm2S/cm2S/cm2S/cm284161616168884448888A B C D3(2013四川南充,10,3分)如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BEEDDC运动到点C停止,点Q沿BC运动到点C停止,它们的运动速度都是1cm/s设P,Q出发秒时,BPQ的面积为cm2,已知与的函数关系的图象如图2(曲线OM为抛物线的一部分)则下列结论: AD=BE=5cm;当0t5时,;直线NH的解析式为;若ABE与QBP相似,则秒其中正确结论的个数为( )A4B3C2D14(2013湖北荆门,12,3分)如图所示,已知等腰梯形ABCD,ADBC,若动直线l垂直于BC,且向右匀速平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是( )xyBADC(第12题)PlxOSxOSxOSxOSA B C D2、 填空题1. (2013杭州4分)射线QN与等边ABC的两边AB,BC分别交于点M,N,且ACQN,AM=MB=2cm,QM=4cm动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm为半径的圆与ABC的边相切(切点在边上),请写出t可取的一切值 (单位:秒)2(2013浙江湖州,16,4分)如图,已知点A是第一象限内横坐标为的一个定点,AC轴于点M,交直线于点N若点P是线段ON上的一个动点,APB30,BAPA,则点P在线段ON上运动时,A点不变,B点随之运动,求当点P从点O运动到点N时,点B运动的路径长是_ _ABCDEPFQ(第14题)3(2013山东菏泽,14,3分)如图所示,在ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于点D,CBP的平分线交CE于Q,当CQ=CE时, EP+BP=_.3、 解答题2(2013湖北孝感,25,12分)如图1,已知正方形ABCD的边长为1,点E在边BC上,若AEF=90,且EF交正方形外角的平分线CF于点F(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)如图2,若点E在线段BC上滑动(不与点B,C重合)AE=EF是否总成立?请给出证明;在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=x2+x+1上,求此时点F的坐标3(2013济宁,23,?分)如图,直线y=x4与坐标轴分别交于点A、B,与直线y=x交于点C在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外)(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值4(2013潍坊,24,13分)如图,抛物线关于直线对称,与坐标轴交于三点,且,点在抛物线上,直线是一次函数的图象,点是坐标原点(1)求抛物线的解析式;(2)若直线平分四边形的面积,求的值(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于两点,问在轴正半轴上是否存在一定点,使得不论取何值,直线与总是关于轴对称?若存在,求出点坐标;若不存在,请说明理由5 (2013湖北宜昌,22,12分)如图1,平面之间坐标系中,等腰直角三角形的直角边BC在x轴正半轴上滑动,点C的坐标为(t,0),直角边AC=4,经过O,C两点做抛物线y1=ax(xt)(a为常数,a0),该抛物线与斜边AB交于点E,直线OA:y2=kx(k为常数,k0)(1)填空:用含t的代数式表示点A的坐标及k的值:A ,k= ;(2)随着三角板的滑动,当a= 时:请你验证:抛物线y1=ax(xt)的顶点在函数y=的图象上;当三角板滑至点E为AB的中点时,求t的值;(3)直线OA与抛物线的另一个交点为点D,当txt+4,|y2y1|的值随x的增大而减小,当xt+4时,|y2y1|的值随x的增大而增大,求a与t的关系式及t的取值范围(2013湖南郴州,25,10分)如图,ABC中,AB=BC,AC=8,BH:AH=k,P为AC边上一动点,设PC=x,作PEAB交BC于E,PFBC交AB于F(1)证明:PCE是等腰三角形;(2)EM、FN、BH分别是PEC、AFP、ABC的高,用含x和k的代数式表示EM、FN,并探究EM、FN、BH之间的数量关系;(3)当k=4时,求四边形PEBF的面积S与x的函数关系式x为何值时,S有最大值?并求出S的最大值8 (2013湖南郴州,26,10分)如图,在直角梯形AOCB中,ABOC,AOC=90,AB=1,AO=2,OC=3,以O为原点,OC、OA所在直线为轴建立坐标系抛物线顶点为A,且经过点C点P在线段AO上由A向点O运动,点Q在线段OC上由C向点O运动,QDOC交BC于点D,OD所在直线与抛物线在第一象限交于点E(1)求抛物线的解析式;(2)点E是E关于y轴的对称点,点Q运动到何处时,四边形OEAE是菱形?(3)点P、Q分别以每秒2个单位和3个单位的速度同时出发,运动的时间为t秒,当t为何值时,PBOD?9. (2013湖南娄底,25,10分)如图,在ABC中,B=45,BC=5,高AD=4,矩形EFPQ的一边QP在BC边上,E、F分别在AB、AC上,AD交EF于点H(1)求证:;(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求出最大面积;(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线DA匀速向上运动(当矩形的边PQ到达A点时停止运动),设运动时间为t秒,矩形EFPQ与ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围10 (2013湖南张家界,25,12分)如图,抛物线y=ax2+bx+c(a0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC(1)求直线CD的解析式;(2)求抛物线的解析式;(3)将直线CD绕点C逆时针方向旋转45所得直线与抛物线相交于另一点E,求证:CEQCDO;(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由12.(2013山西,):如图,抛物线与x轴交于A,B两点(点B在点A的右侧)与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q(1)求点A,B,C的坐标。(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N。试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由。(3)当点P在线段EB上运动时,是否存在点 Q,使BDQ为直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由。13.(2013四川乐山,26,13分)如图1,已知抛物线C经过原点,对称轴与抛物线相交于第三象限的点M,与x轴相交于点N,且。(1)求抛物线C的解析式;(2)将抛物线C绕原点O旋转1800得到抛物线,抛物线与x轴的另一交点为A,B为抛物线上横坐标为2的点。若P为线段AB上一动点,PDy轴于点D,求APD面积的最大值;过线段OA上的两点E、F分别作x轴的垂线,交折线OBA于E1、F1,再分别以线段EE1、FF1为边作如图2所示的等边AE1E2、等边AF1F2,点E以每秒1个长度单位的速度从点O向点A运动,点F以每秒1个长度单位的速度从点A向点O运动,当AE1E2有一边与AF1F2的某一边在同一直线上时,求时间t的值。16.(2013四川乐山,26,13分)如图1,已知抛物线C经过原点,对称轴与抛物线相交于第三象限的点M,与x轴相交于点N,且。(1)求抛物线C的解析式;(2)将抛物线C绕原点O旋转1800得到抛物线,抛物线与x轴的另一交点为A,B为抛物线上横坐标为2的点。若P为线段AB上一动点,PDy轴于点D,求APD面积的最大值;过线段OA上的两点E、F分别作x轴的垂线,交折线OBA于E1、F1,再分别以线段EE1、FF1为边作如图2所示的等边AE1E2、等边AF1F2,点E以每秒1个长度单位的速度从点O向点A运动,点F以每秒1个长度单位的速度从点A向点O运动,当AE1E2有一边与AF1F2的某一边在同一直线上时,求时间t的值。18(2013潍坊,24,13分)如图,抛物线关于直线对称,与坐标轴交于三点,且,点在抛物线上,直线是一次函数的图象,点是坐标原点(1)求抛物线的解析式;(2)若直线平分四边形的面积,求的值(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于两点,问在轴正半轴上是否存在一定点,使得不论取何值,直线与总是关于轴对称?若存在,求出点坐标;若不存在,请说明理由19(2013江苏苏州,28,9分)如图,点O为矩形ABCD的对称中心,AB10cm,BC12cm点E,F,G分别从A,B,C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cms,点G的运动速度为1.5cms当点F到达点C(即点F与点C重合)时,三个点随之停止运动在运动过程中,EBF关于直线EF的对称图形是EBF,设点E,F,G运动的时间为t(单位:s)(1)当t s时,四边形EBFB为正方形;(2)若以点E,B,F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B与点O重合?若存在,求出t的值;若不存在,请说明理由20(2013江苏扬州,27,12分)如图1,在梯形ABCD中,ABCD,B=90,AB=2,CD=1,BC=,P为线段BC上的一动点,且和B、C不重合,连接PA,过点P作PEPA交CD所在直线于E,设BP=,CE=.(1)求与的函数关系式;(2)若点P在线段BC上运动时,点E总在线段CD上,求的取值范围;(3)如图2,若=4,将PEC沿PE翻折到PEG位置,BAG=90,求BP长.21(2013山东临沂,25,11分)如图,矩形ABCD中,ACB30,将一块直角三角板的直角顶点P放在两对角线AC,BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别与边AB,BC所在的直线相交,交点分别为E,F(1)当PEAB,PFBC时,如图1,则的值为_;(2)现将三角板绕点P逆时针旋转(060)角,如图2,求的值;(3)在(2)的基础上继续旋转,当6090,且使AP:PC1:2时,如图3,的值是否变化?证明你的结论ABCFDEPABCFDPABCFDPEE图1图2图322(2013四川成都,20,10分)如图,点B在线段AC上,点D,E在AC同侧,AC90,BDBE,ADBC(1)求证:ACADCE;(2)若AD3,CE5,点P为线段AB上的动点,连接DP,作PQDP,交直线BE于点Qi)当点P与A,B两点不重合时,求的值;ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长(直接写出结果,不必写出解答过程)APBCEQD第20题图23(2013浙江台州,24,14分)如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“好玩三角形”(1)请用直尺和圆规画一个“好玩三角形”;(2)如图1,在RtABC中,C=90,tanA=,求证:ABC是“好玩三角形”;(3)如图2,已知菱形ABCD的边长为a,ABC=2,点P,Q从点A同时出发,以相同速度分别沿折线ABBC和ADDC向终点C运动,记点P所经过的路程为s当=45时,若APQ是“好玩三角形”,试求的值;当tan的取值在什么范围内,点P,Q在运动过程中,有且只有一个APQ能成为“好玩三角形”,请直接写出tan的取值范围(4)(本小题为选做题,做对另加2分,但全卷满分不超过150分)依据(3)中的条件,提出一个关于“在点P,Q的运动过程中,tan的取值范围与APQ是“好玩三角形”的个数关系“的真命题(“好玩三角形”的个数限定不能为1)DAABC图1BCDPQ图2第24题ABC备用图DFEMN8(2013浙江湖州,24,8分)如图,O为坐标原点,点B在轴的正半轴上,四边形OACB是平行四边形,反比例函数()在第一象限内的图象经过点A,与BC交于点F(1)若OA10,求反比例函数的解析式;(2)若点F为BC的中点,且AOF的面积S12,求OA的长和点C的坐标;(3)在(2)的条件下,过点F作EFOB,交OA于点E(如图),点P为直线EF上的一个动点,连接PA、PO是否存在这样的点P,使以P、O、A为顶点的三角形是直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由24(2013重庆,26,12分)已知,在矩形ABCD中,E为BC边上一点,AEDE,AB=12,BE=16,F为线段BE上一点,EF=7,连接AF如图,现有一张硬质纸片GMN,NGM=90,NG=6,MG=8,斜边MN与边BC在同一直线上,点N与点E重合,点G在线段DE上如图,GMN从图的位置出发,以每秒1个单位的速度沿EB向点B匀速移动,同时,点P从A点出发,以每秒1个单位的速度沿AD向点D匀速移动,点Q为直线GN与线段AE的交点,连接PQ当点N到达终点B时,GMN和点P同时停止运动设运动时间为t秒,解答下列问题:(1)在整个运动过程中,当点G在线段AE上时,求t的值(2)在整个运动过程中,是否存在点P,使APQ是等腰三角形若存在,求出t的值;若不存在,说明理由(3)在整个运动过程中,设GMN与AEF重叠部分的面积

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论