2009年高考数学试题(前三道大题整理)(11-15套).doc_第1页
2009年高考数学试题(前三道大题整理)(11-15套).doc_第2页
2009年高考数学试题(前三道大题整理)(11-15套).doc_第3页
2009年高考数学试题(前三道大题整理)(11-15套).doc_第4页
2009年高考数学试题(前三道大题整理)(11-15套).doc_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(十一) 17. 在中,分别是三个内角的对边若,求的面积w.w.w.k.s.5.u.c.o.m18. 已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的5个红球和4个黑球现从甲、乙两个盒内各任取2个球()求取出的4个球均为红球的概率;()求取出的4个球中恰有1个红球的概率;19. 如图,平面平面,四边形与都是直角梯形,分别为的中点()证明:四边形是平行四边形;()四点是否共面?为什么?()设,证明:平面平面(十二)17.已知,()求的值.()求.18. 某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为、,且各轮问题能否正确回答互不影响.()求该选手进入第四轮才被淘汰的概率;()求该选手至多进入第三轮考核的概率.19. 如图,四面体ABCD中,O、E分别是BD、BC的中点,(I)求证:平面BCD;(II)求异面直线AB与CD所成角的大小;(III)求点E到平面ACD的距离。(十三)17.已知函数()求函数的最小正周期;()求函数在区间上的最小值和最大值18.从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件:“取出的2件产品中至多有1件是二等品”的概率(1)求从该批产品中任取1件是二等品的概率;(2)若该批产品共100件,从中任意抽取2件,求事件:“取出的2件产品中至少有一件二等品”的概率19. 如图,在直三棱柱ABCA1B1C1中,ABBC,D、E分别为BB1、AC1的中点ABCDEA1B1C1()证明:ED为异面直线BB1与AC1的公垂线;()设AA1ACAB,求二面角A1ADC1的大小(十四)17.在中,已知,()求的值;()求的值18. 某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响(I)任选1名下岗人员,求该人参加过培训的概率;(II)任选3名下岗人员,求这3人中至少有2人参加过培养的概率19. 在长方体中,已知,求异面直线与所成角的大小(结果用反三角函数值表示).(十五)17.已知的周长为,且(I)求边的长;(II)若的面积为,求角的度数18. 甲、乙两名跳高运动员一次试跳米高度成功的概率分别是,且每次试跳成功与否相互之间没有影响,求:()甲试跳三次,第三次才成功的概率;()甲、乙两人在第一次试跳中至少有一人成功的概率;()甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率19. 如图,在长方体中,分别是的中点,分别是的中点,()求证:面;()求二面角的大小。 ()求三棱锥的体积。答案(十一)17.解: 由题意,得为锐角, , 由正弦定理得 , 18. ()解:设“从甲盒内取出的2个球均为红球”为事件,“从乙盒内取出的2个球均为红球”为事件由于事件相互独立,且,故取出的4个球均为红球的概率是()解:设“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个红球为黑球”为事件,“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件由于事件互斥,且,故取出的4个红球中恰有4个红球的概率为19. 由平面平面,得平面,以为坐标原点,射线为轴正半轴,建立如图所示的直角坐标系()设,则由题设得所以于是又点不在直线上所以四边形是平行四边形。()四点共面。理由如下:由题设知,所以又,故四点共面。()由得,所以又,因此即又,所以平面故由平面,得平面平面(十二)17.解:()由,得,于是()由,得又,由得:所以解:()记“该选手能正确回答第轮的问题”的事件为,则,该选手进入第四轮才被淘汰的概率()该选手至多进入第三轮考核的概率19. (I)证明:连结OC在中,由已知可得而即平面(II)解:以O为原点,如图建立空间直角坐标系,则异面直线AB与CD所成角的大小为(III)解:设平面ACD的法向量为则令得是平面ACD的一个法向量。又点E到平面ACD的距离(十三)17()解:因此,函数的最小正周期为()解法一:因为在区间上为增函数,在区间上为减函数,又,故函数在区间上的最大值为,最小值为解法二:作函数在长度为一个周期的区间上的图象如下:由图象得函数在区间上的最大值为,最小值为18. (1)记表示事件“取出的2件产品中无二等品”,表示事件“取出的2件产品中恰有1件二等品”则互斥,且,故 于是解得(舍去)(2)记表示事件“取出的2件产品中无二等品”,则若该批产品共100件,由(1)知其中二等品有件,故19. ()如图,建立直角坐标系Oxyz,其中原点O为AC的中点设A(a,0,0),B(0,b,0),B1(0,b,2c)则C(a,0,0),C1(a,0,2c),E(0,0,c),D(0,b,c) 3分ABCDEA1B1C1Ozxy(0,b,0),(0,0,2c)0,EDBB1又(2a,0,2c),0,EDAC1, 6分所以ED是异面直线BB1与AC1的公垂线()不妨设A(1,0,0),则B(0,1,0),C(1,0,0),A1(1,0,2),(1,1,0),(1,1,0),(0,0,2),0,0,即BCAB,BCAA1,又ABAA1A,BC平面A1AD又E(0,0,1),D(0,1,1),C(1,0,1),(1,0,1),(1,0,1),(0,1,0),0,0,即ECAE,ECED,又AEEDE,EC面C1AD10分cos,即得和的夹角为60所以二面角A1ADC1为60 12分(十四)17.()解:在中,由正弦定理,所以()解:因为,所以角为钝角,从而角为锐角,于是,18. 解:任选1名下岗人员,记“该人参加过财会培训”为事件,“该人参加过计算机培训”为事件,由题设知,事件与相互独立,且,(I)解法一:任选1名下岗人员,该人没有参加过培训的概率是所以该人参加过培训的概率是解法二:任选1名下岗人员,该人只参加过一项培训的概率是该人参加过两项培训的概率是所以该人参加过培训的概率是(II)解法一:任选3名下岗人员,3人中只有2人参加过培训的概率是3人都参加过培训的概率是所以3人中至少有2人参加过培训的概率是解法二:任选3名下岗人员,3人中只有1人参加过培训的概率是3人都没有参加过培训的概率是所以3人中至少有2人参加过培训的概率是19. 以为坐标原点,分别以、所在直线为轴、轴、轴,建立空间直角坐标系. 2分 则 , 得 . 6分 设与的夹角为, 则, 10分 与的夹角大小为, 即异面直线与所成角的大小为. 12分(十五)17.解:(I)由题意及正弦定理,得,两式相减,得(II)由的面积,得,由余弦定理,得,所以18. 解:记“甲第次试跳成功”为事件,“乙第次试跳成功”为事件,依题意得,且,()相互独立()“甲第三次试跳才成功”为事件,且三次试跳相互独立,答:甲第三次试跳才成功的概率为()“甲、乙两人在第一次试跳中至少有一人成功”为事件解法一:,且,彼此互斥,解法二:答:甲、乙两人在第一次试跳中至少有一人成功的概率为()设“甲在两次试跳中成功次”为事件,“乙在两次试跳中成功次”为事件,事件“甲、乙各试跳两次,甲比乙的成功次数恰好多一次”可表示为,且,为互斥事件,所求的概率为答:甲、乙每人试跳两次,甲比乙的成功次数恰好多一次的概率为19. 以为原点,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论