




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2013全国中考数学试题分类汇编-四边形(2013郴州)已知一个多边形的内角和是1080,这个多边形的边数是考点:多边形内角与外角3718684分析:根据多边形内角和定理:(n2)180 (n3)且n为整数)可得方程180(x2)=1080,再解方程即可解答:解:设多边形边数有x条,由题意得:180(x2)=1080,解得:x=8,故答案为:8点评:此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n2)180 (n3)且n为整数)(2013郴州)如图,已知BEDF,ADF=CBE,AF=CE,求证:四边形DEBF是平行四边形考点:平行四边形的判定;全等三角形的判定与性质3718684专题:证明题分析:首先根据平行线的性质可得BEC=DFA,再加上条件ADF=CBE,AF=CE,可证明ADFCBE,再根据全等三角形的性质可得BE=DF,根据一组对边平行且相等的四边形是平行四边形进行判定即可解答:证明:BEDF,BEC=DFA,在ADF和CBE中,ADFCBE(AAS),BE=DF,又BEDF,四边形DEBF是平行四边形点评:此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形(2013衡阳)如图,P为正方形ABCD的边AD上的一个动点,AEBP,CFBP,垂足分别为点E、F,已知AD=4(1)试说明AE2+CF2的值是一个常数;(2)过点P作PMFC交CD于点M,点P在何位置时线段DM最长,并求出此时DM的值考点:正方形的性质;二次函数的最值;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质3718684分析:(1)由已知AEB=BFC=90,AB=BC,结合ABE=BCF,证明ABEBCF,可得AE=BF,于是AE2+CF2=BF2+CF2=BC2=16为常数;(2)设AP=x,则PD=4x,由已知DPM=PAE=ABP,PDMBAP,列出关于x的一元二次函数,求出DM的最大值解答:解:(1)由已知AEB=BFC=90,AB=BC,又ABE+FBC=BCF+FBC,ABE=BCF,在ABE和BCF中,ABEBCF(AAS),AE=BF,AE2+CF2=BF2+CF2=BC2=16为常数;(2)设AP=x,则PD=4x,由已知DPM=PAE=ABP,PDMBAP,=,即=,DM=xx2,当x=2时,DM有最大值为1点评:本题主要考查正方形的性质等知识点,解答本题的关键是熟练掌握全等三角形的判定定理以及三角形相似等知识,此题有一定的难度,是一道不错的中考试题(2013,娄底)下列命题中,正确的是()A.平行四边形的对角线相等B.矩形的对角线互相垂直C.菱形的对角线互相垂直且平分D.梯形的对角线相等(2013,娄底)一个多边形的内角和是它的外角和的2倍,则这个多边形的边数为_.(2013湘西州)下列说法中,正确的是()A同位角相等B对角线相等的四边形是平行四边形C四条边相等的四边形是菱形D矩形的对角线一定互相垂直考点:菱形的判定;同位角、内错角、同旁内角;平行四边形的判定;矩形的性质3718684分析:根据平行线的性质判断A即可;根据平行四边形的判定判断B即可;根据菱形的判定判断C即可;根据矩形的性质判断D即可解答:解:A、如果两直线平行,同位角才相等,故本选项错误;B、对角线互相平分的四边形是平行四边形,故本选项错误;C、四边相等的四边形是菱形,故本选项正确;D、矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选C点评:本题考查了平行线的性质,平行四边形、菱形的判定、矩形的性质的应用,主要考查学生的理解能力和辨析能力(2013湘西州)如图,在ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则EDF与BCF的周长之比是()A1:2B1:3C1:4D1:5考点:平行四边形的性质;全等三角形的判定与性质分析:根据平行四边形性质得出AD=BC,ADBC,推出EDFBCF,得出EDF与BCF的周长之比为,根据BC=AD=2DE代入求出即可解答:解:四边形ABCD是平行四边形,AD=BC,ADBC,EDFBCF,EDF与BCF的周长之比为,E是AD边上的中点,AD=2DE,AD=BC,BC=2DE,EDF与BCF的周长之比1:2,故选A点评:本题考查了平行四边形性质,相似三角形的性质和判定的应用,注意:平行四边形的对边平行且相等,相似三角形的周长之比等于相似比(2013湘西州)如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE(1)求证:BECDFA;(2)求证:四边形AECF是平行四边形考点:矩形的性质;全等三角形的判定与性质;平行四边形的判定专题:证明题分析:(1)根据E、F分别是边AB、CD的中点,可得出BE=DF,继而利用SAS可判断BECDFA;(2)由(1)的结论,可得CE=AF,继而可判断四边形AECF是平行四边形解答:证明:(1)四边形ABCD是矩形,AB=CD,AD=BC,又E、F分别是边AB、CD的中点,BE=DF,在BEC和DFA中,BECDFA(SAS)(2)由(1)得,CE=AF,AD=BC,故可得四边形AECF是平行四边形点评:本题考查了矩形的性质、全等三角形的判定与性质及平行四边形的判定,解答本题的关键是熟练掌握矩形的对边相等,四角都为90,及平行四边形的判定定理(2013益阳)如图,在平行四边形ABCD中,下列结论中错误的是()A1=2BBAD=BCDCAB=CDDACBD考点:平行四边形的性质分析:根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可解答:解:在平行四边形ABCD中,ABCD,1=2,故此选项正确,不合题意;四边形ABCD是平行四边形,BAD=BCD,AB=CD,故B,C选项正确,不合题意;无法得出ACBD,故此选项错误,符合题意故选D点评:此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键(2013巴中)如图,在梯形ABCD中,ADBC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是()A9B10.5C12D15考点:梯形中位线定理245761 分析:根据梯形的中位线等于两底和的一半解答解答:解:E和F分别是AB和CD的中点,EF是梯形ABCD的中位线,EF=(AD+BC),EF=6,AD+BC=62=12故选C点评:本题主要考查了梯形的中位线定理,熟记梯形的中位线平行于两底边并且等于两底边和的一半是解题的关键(2012泸州)如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()A24B16C4D2考点:菱形的性质;勾股定理245761 分析:由菱形ABCD的两条对角线相交于O,AC=6,BD=4,即可得ACBD,求得OA与OB的长,然后利用勾股定理,求得AB的长,继而求得答案解答:解:四边形ABCD是菱形,AC=6,BD=4,ACBD,OA=AC=3,OB=BD=2,AB=BC=CD=AD,在RtAOB中,AB=,菱形的周长是:4AB=4故选C点评:此题考查了菱形的性质与勾股定理此题难度不大,注意掌握数形结合思想的应用(2013巴中)若一个多边形外角和与内角和相等,则这个多边形是边形考点:多边形内角与外角245761 分析:利用多边形的内角和公式与多边形的外角和定理列出方程,然后解方程即可求出多边形的边数解答:解:设这个多边形的边数是n,则(n2)180=360,解得n=4故答案为:四点评:本题考查了多边形的内角和公式与多边形的外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360(2013巴中)如图,在平行四边形ABCD中,过点A作AEBC,垂足为E,连接DE,F为线段DE上一点,且AFE=B(1)求证:ADFDEC;(2)若AB=8,AD=6,AF=4,求AE的长考点:相似三角形的判定与性质;勾股定理;平行四边形的性质245761 分析:(1)利用对应两角相等,证明两个三角形相似ADFDEC;(2)利用ADFDEC,可以求出线段DE的长度;然后在在RtADE中,利用勾股定理求出线段AE的长度解答:(1)证明:ABCD,ABCD,ADBC,C+B=180,ADF=DECAFD+AFE=180,AFE=B,AFD=C在ADF与DEC中,ADFDEC(2)解:ABCD,CD=AB=8由(1)知ADFDEC,DE=12在RtADE中,由勾股定理得:AE=6点评:本题主要考查了相似三角形的判定与性质、平行四边形的性质和勾股定理三个知识点题目难度不大,注意仔细分析题意,认真计算,避免出错(2013,成都)如图,将矩形ABCD沿对角线BD折叠,使点C和点重合,若AB=2,则D的长为( )(A)1 (B)2 (C)3 (D)4ABCDEF第17题图(2013德州)如图,在正方形中,边长为2的等边三角形的顶点、分别在和上下列结论: CE=CF;AEB=75;BEDF=EF;S正方形ABCD=其中正确的序号是_(把你认为正确的都填上)2013德州)ABC第23题图1(1)如图1,已知ABC,以AB、AC为边向ABC外做等边ABD和等边ACE连接BE,CD请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹)ABCFDGE第23题图2(2)如图2,已知ABC,以AB、AC为边向外做正方形ABFD和正方形ACGE连接BE,CDBE与CD有什么数量关系?简单说明理由(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得ABC=45,EABC第23题图3CAE=90,AB=BC=100米,AC=AE求BE的长(2013广安)如图,在平行四边形ABCD中,AECF,求证:ABECDF考点:平行四边形的性质;全等三角形的判定3718684专题:证明题分析:首先证明四边形AECF是平行四边形,即可得到AE=CF,AF=CF,再根据由三对边相等的两个三角形全等即可证明:ABECDF解答:证明:四边形ABCD是平行四边形,AECF,AD=BC,AB=CD,AECF,四边形AECF是平行四边形,AE=CF,AF=CF,BE=DE,在ABE和CDF中,ABECDF(SSS)点评:此题主要考查学生对平行四边形的判定与性质和全等三角形的判定的理解和掌握,难度不大,属于基础题(2013乐山)如图2,点E是平行四边形ABCD的边CD的中点,AD、BE的延长线相交于点F,DF=3,DE=2,则平行四边形ABCD的周长为A. 5 B. 7 C.10 D. 14(2013乐山)如图14.1,在梯形ABCD中,AD/BC,点M、N分别在边AB、DC上,且MN/AD,记AD=a ,BC=b.若 = ,则有结论:MN = .请根据以上结论,解答下列问题: 如图14.2、14.3,BE、CF是ABC的两条角平分线,过EF上一点P分别作ABC三边的垂线段PP1、PP2、PP3,交BC于点P1,交AB于点P2,交AC于点P3 .(1)若点P为线段EF的中点,求证: PP1 = PP2 + PP3 ;(2)若点P为线段EF上的任意点,试探究PP1、PP2、PP3的数量关系,并给出证明。(2013凉山州)如图,菱形ABCD中,B=60,AB=4,则以AC为边长的正方形ACEF的周长为()A14B15C16D17考点:菱形的性质;等边三角形的判定与性质;正方形的性质分析:根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可解答:解:四边形ABCD是菱形,AB=BC,B=60,ABC是等边三角形,AC=AB=4,正方形ACEF的周长是AC+CE+EF+AF=44=16,故选C点评:本题考查了菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC的长(2013凉山州)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当ODP是腰长为5的等腰三角形时,点P的坐标为 考点:矩形的性质;坐标与图形性质;等腰三角形的性质;勾股定理专题:动点型分析:当ODP是腰长为5的等腰三角形时,有三种情况,需要分类讨论解答:解:由题意,当ODP是腰长为5的等腰三角形时,有三种情况:(1)如答图所示,PD=OD=5,点P在点D的左侧过点P作PEx轴于点E,则PE=4在RtPDE中,由勾股定理得:DE=3,OE=ODDE=53=2,此时点P坐标为(2,4);(2)如答图所示,OP=OD=5过点P作PEx轴于点E,则PE=4在RtPOE中,由勾股定理得:OE=3,此时点P坐标为(3,4);(3)如答图所示,PD=OD=5,点P在点D的右侧过点P作PEx轴于点E,则PE=4在RtPDE中,由勾股定理得:DE=3,OE=OD+DE=5+3=8,此时点P坐标为(8,4)综上所述,点P的坐标为:(2,4)或(3,4)或(8,4)点评:本题考查了分类讨论思想在几何图形中的应用,符合题意的等腰三角形有三种情形,注意不要遗漏(2013泸州)四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是A.AB/DC,AD/BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB/DC,AD=BC(2013泸州)如图,已知ABCD中,F是BC边的中点,连接DF并延长,交AB的延长线于点E.求证:AB=BE.(2013眉山)一个正多边形的每个外角都是36,这个正多边形的边数是 A9 B10 C11 D12(2013绵阳)下列说法正确的是( )A对角线相等且互相垂直的四边形是菱形B对角线互相垂直的梯形是等腰梯形C对角线互相垂直的四边形是平行四边形D对角线相等且互相平分的四边形是矩形(2013绵阳)如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为( )A B12mm C D7题图(2013绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DHAB于点H,且DH与AC交于G,则GH=( )10题图A B C D(2013绵阳)对正方形ABCD进行分割,如图1,其中E、F分别是BC、CD的中点,M、N、G分别是OB、OD、EF的中点,沿分化线可以剪出一副“七巧板”,用这些部件可以拼出很多图案,图2就是用其中6块拼出的“飞机”。若GOM的面积为1,则“飞机”的面积为 。(2013内江)已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=5考点:轴对称-最短路线问题;菱形的性质分析:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,求出OC、OB,根据勾股定理求出BC长,证出MP+NP=QN=BC,即可得出答案解答:解:作M关于BD的对称点Q,连接NQ,交BD于P,连接MP,此时MP+NP的值最小,连接AC,四边形ABCD是菱形,ACBD,QBP=MBP,即Q在AB上,MQBD,ACMQ,M为BC中点,Q为AB中点,N为CD中点,四边形ABCD是菱形,BQCD,BQ=CN,四边形BQNC是平行四边形,NQ=BC,四边形ABCD是菱形,CO=AC=3,BO=BD=4,在RtBOC中,由勾股定理得:BC=5,即NQ=5,MP+NP=QP+NP=QN=5,故答案为:5点评:本题考查了轴对称最短路线问题,平行四边形的性质和判定,菱形的性质,勾股定理的应用,解此题的关键是能根据轴对称找出P的位置(2007黄石)若一个多边形内角和等于1260,则该多边形边数是考点:多边形内角与外角专题:计算题分析:根据多边形内角和定理及其公式,即可解答;解答:解:一个多边形内角和等于1260,(n2)180=1260,解得,n=9故答案为9点评:本题考查了多边形的内角定理及其公式,关键是记住多边形内角和的计算公式)(2013遂宁)如图,已知四边形ABCD是平行四边形,DEAB,DFBC,垂足分别是E、F,并且DE=DF求证:(1)ADECDF;(2)四边形ABCD是菱形考点:菱形的判定;全等三角形的判定与性质;平行四边形的性质专题:证明题分析:(1)首先根据平行四边形的性质得出A=C,进而利用全等三角形的判定得出即可;(2)根据菱形的判定得出即可解答:解:(1)DEAB,DFBCAED=CFD=90,四边形ABCD是平行四边形A=C,在AED和CFD中AEDCFD(AAS);(2)AEDCFD,AD=CD,四边形ABCD是平行四边形,四边形ABCD是菱形点评:此题主要考查了菱形的性质和全等三角形的判定等知识,根据已知得出A=C是解题关键(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国移动甘孜自治州2025秋招网申填写模板含开放题范文
- 中国广电焦作市2025秋招笔试行测题库及答案技能类
- 株洲市中石化2025秋招笔试模拟题含答案法律与合规岗
- 襄阳市中储粮2025秋招信息技术岗高频笔试题库含答案
- 国家能源桂林市2025秋招面试专业追问及参考电气工程岗位
- 大唐电力乐山市2025秋招面试典型题目及答案
- 西藏地区中储粮2025秋招财务资产岗高频笔试题库含答案
- 国家能源齐齐哈尔市2025秋招采矿工程类面试追问及参考回答
- 中国移动盘锦市2025秋招计算机类专业追问清单及参考回答
- 宜宾市中储粮2025秋招面试专业追问题库安全环保岗
- DL∕T 802.7-2023 电力电缆导管技术条件 第7部分:非开挖用塑料电缆导管
- 浙教版八年级信息技术上册《第4课-在线协同》课件
- 停车位买卖合同电子版
- ISO15614-1 2017 金属材料焊接工艺规程及评定(中文版)
- 2024年安徽九华山旅游发展股份有限公司招聘笔试参考题库附带答案详解
- B级英语词汇表修改版
- 2024年山西省成考(专升本)大学政治考试真题含解析
- 最高法院第一巡回法庭关于行政审判法律适用若干问题的会议纪要
- 足球场的运营可行性方案
- GB/T 2881-2023工业硅
- 有限合伙份额质押合同完整版(包含质押登记公证手续)
评论
0/150
提交评论