




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学学习有妙法往往有同学进入高中以后不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。为什么会这样呢?让我们先看看高中数学和初中数学有些什么样的转变吧。 一、高中数学的特点 1、 理论加强 2、 课程增多 3、 难度增大 4、 要求提高二、掌握数学思想高中数学从学习方法和思想方法上更接近于高等数学。学好它,需要我们从方法论的高度来掌握它。我们在研究数学问题时要经常运用唯物辩证的思想去解决数学问题。数学思想,实质上就是唯物辩证法在数学中的运用的反映。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,初步公理化思想,数形结合思想,运动思想,转化思想,变换思想。例如,数列、一次函数、解析几何中的直线几个概念都可以用函数(特殊的对应)的概念来统一。又比如,数、方程、不等式、数列几个概念也都可以统一到函数概念。再看看下面这个运用“矛盾”的观点来解题的例子。已知动点Q在圆x2+y2=1上移动,定点P(2,0),求线段PQ中点的轨迹。分析此题,图中P、Q、M三点是互相制约的,而Q点的运动将带动M点的运动;主要矛盾是点Q的运动,而点Q的运动轨迹遵循方程x02+y02=1;次要矛盾关系:M是线段PQ的中点,可以用中点公式将M的坐标(x,y)用点Q的坐标表示出来。 x=(x0+2)/2 y=y0/2 显然,用代入的方法,消去题中的x0、y0就可以求得所求轨迹。数学思想方法与解题技巧是不同的,在证明或求解中,运用归纳、演绎、换元等方法解题问题可以说是解题的技术性问题,而数学思想是解题时带有指导性的普遍思想方法。在解一道题时,从整体考虑,应如何着手,有什么途径?就是在数学思想方法的指导下的普遍性问题。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。只有在解题思想的指导下,灵活地运用具体的解题方法才能真正地学好数学,仅仅掌握具体的操作方法,而没有从解题思想的角度考虑问题,往往难于使数学学习进入更高的层次,会为今后进入大学深造带来很有麻烦。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。要打赢一场战役,不可能只是勇猛冲杀、一不怕死二不怕苦就可以打赢的,必须制订好事关全局的战术和策略问题。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。一般地,在解题中所采取的总体思路,是带有原则性的思想方法,是一种宏观的指导,一般性的解决方案。中学数学中经常用到的数学思维策略有:以简驭繁、数形结全、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅。如果有了正确的数学思想方法,采取了恰当的数学思维策略,又有了丰富的经验和扎实的基本功,一定可以学好高中数学。三、学习方法的改进身处应试教育的怪圈,每个教师和学生都不由自主地陷入“题海”之中,教师拍心某种题型没讲,高考时做不出,学生怕少做一道题,万一考了损失太惨重,在这样一种氛围中,往往忽视了学习方法的培养,每个学生都有自己的方法,但什么样的学习方法才是正确的方法呢?是不是一定要“博览群题”才能提高水平呢?现实告诉我们,大胆改进学习方法,这是一个非常重大的问题。(一) 学会听、读我们每天在学校里都在听老师讲课,阅读课本或者资料,但我们听和读对不对呢?让我们从听(听讲、课堂学习)和读(阅读课本和相关资料)两方面来谈谈吧。学生学习的知识,往往是间接的知识,是抽象化、形式化的知识,这些知识是在前人探索和实践的基础上提炼出来的,一般不包含探索和思维的过程。因此必须听好老师讲课,集中注意力,积极思考问题。弄清讲得内容是什么?怎么分析?理由是什么?采用什么方法?还有什么疑问?只有这样,才可能对教学内容有所理解。听讲的过程不是一个被动参预的过程,在听讲的前提下,还要展开来分析:这里用了什么思想方法,这样做的目的是什么?为什么老师就能想到最简捷的方法?这个题有没有更直接的方法? “学而不思则罔,思而不学则殆”,在听讲的过程中一定要有积极的思考和参预,这样才能达到最高的学习效率。阅读数学教材也是掌握数学知识的非常重要的方法。只有真正阅读和数学教材,才能较好地掌握数学语言,提高自学能力。一定要改变只做题不看书,把课本当成查公式的辞典的不良倾向。阅读课本,也要争取老师的指导。阅读当天的内容或一个单元一章的内容,都要通盘考虑,要有目标。比如,学习反正弦函数,从知识上来讲,通过阅读,应弄请以下几个问题: (1)是不是每个函数都有反函数,如果不是,在什么情况下函数有反函数?(2)正弦函数在什么情况下有反函数?若有,其反函数如何表示?(3)正弦函数的图象与反正弦函数的图象是什么关系?(4)反正弦函数有什么性质?(5)如何求反正弦函数的值?(二) 学会思考爱因斯坦曾说:“发展独立思考和独立判断的一般能力应当始终放在首位”,勤于思考,善于思考,是对我们学习数学提出的最基本的要求。一般来说,要尽力做到以下两点。1、善于发现问题和提出问题2、善于反思与反求进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。出现这样的情况,原因很多。但主要是由于学生不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的。在此结合高中数学教学内容的特点,谈一下高中数学学习方法,供同学参考。一、 高中数学与初中数学特点的变化1、数学语言在抽象程度上突变 初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及非常抽象的集合语言、逻辑运算语言、函数语言、图象语言等。 2、思维方法向理性层次跃迁 高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么等。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。 3、知识内容的整体数量剧增 高中数学与初中数学又一个明显的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。 4、知识的独立性大 初中知识的系统性是较严谨的,给我们学习带来了很大的方便。因为它便于记忆,又适合于知识的提取和使用。但高中的数学却不同了,它是由几块相对独立的知识拼合而成(如高一有集合,命题、不等式、函数的性质、指数和对数函数、指数和对数方程、三角比、三角函数、数列等),经常是一个知识点刚学得有点入门,马上又有新的知识出现。因此,注意它们内部的小系统和各系统之间的联系成了学习时必须花力气的着力点。 二、如何学好高中数学 1、养成良好的学习数学习惯。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。 2、及时了解、掌握常用的数学思想和方法学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。 3、逐步形成 “以我为主”的学习模式 数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。 4、针对自己的学习情况,采取一些具体的措施 记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。 建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。 熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。 经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。 阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。 及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。学会从多角度、多层次地进行总结归类。如:从数学思想分类从解题方法归类从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。 经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。 无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。怎样学好数学首先要有学习数学的兴趣。两千多年前的孔子就说过:“知之者不如好之者,好之者不如乐之者。”这里的“好”与“乐”就是愿意学、喜欢学,就是学习兴趣,世界知名的伟大科学家、相对论学说的创立者爱因斯坦也说过:“在学校里和生活中,工作的最重要动机是工作中的乐趣。”学习的乐趣是学习的主动性和积极性,我们经常看到一些同学,为了弄清一个数学概念长时间埋头阅读和思考;为了解答一道数学习题而废寝忘食。这首先是因为他们对数学学习和研究感兴趣,很难想象,对数学毫无兴趣,见了数学题就头痛的人能够学好数学,要培养学习数学的兴趣首先要认识学习数学的重要性,数学被称为科学的皇后,它是学习科学知识和应用科学知识必 的工具。可以说,没有数学,也就不可能学好其他学科;其次必须有钻研的精神,有非学好不可的韧劲,在深入钻研的过程中,就可以 略到数学的奥妙,体会到学习数学获取成功的喜悦。长久下去,自然会对数学产生浓厚的兴趣,并激发出学好数学的高度自觉性和积极性。有了学习数学的兴趣和积极性,要学好数学,还要注意学习方法并养成良好的学习习惯。 知识是能力的基础,要切实抓好基础知识的学习。数学基础知识学习包括概念学习,定理公式学习以及解题学习三个方面。学习数学概念,要善于抓住它的本质属性,也就是区别于这个概念和其他概念的属性;学习定理公式,要紧紧抓住定理方向的内在联系,抓住定理公式适用的范围及题型,做到得心应手地应用这些定理公式,数学解题实上是在熟练掌握概念与定理公式的基础上解决矛盾,完成从“未知”向“已知”的转化。要著重学习各种转化方式,培养转化的能力。总而言之,在学习数学基础知识中,要注意把握知识的整体精髓, 悟其中的规律和实质,形成一个紧密联系的整体认识体系,以促进各种形式间的相互迁移和转化。同时,还要注意知识形成过程无处不隐含著人们在教学活动中解决问题的途径、手段和策略,无处不以数学思想、方法为指南,而这也是我们学习知识时最希望要学到的东西。 数学思想方法是知识、技能转化为能力的桥粱,是数学结构中强有力的支柱,在中学数学课本里渗透了函数的思想,方程的思想,数形结合的思想,逻辑划分的思想,等价转化的思想,类比归纳的思想,介绍了配方法、消元法、换元法、待定系数法、反证法、数学归纳法等,在学好数学知识的同时,要下大力气理解这些思想和方法的原理和依据,并通过大量的练习,掌握运用这些思想和方法解决数学问题的步骤和技巧。在数学学习中,要特别重视运用数学知识解决实问题能力的培养。数学社会化的趋势,使得“大众数学”的口号席卷整个世界,有人认为未来的工作岗位是为已作好数学准备的人才提供的,这里所说的“已作好了数学准备”并不仅指懂得了数学理论,更重要的是学会了数学思想,学会了将数学知识灵活运用于解决现实问题中。培养数学应用能力,首先要养成将实问题数学化的习惯;其次,要掌握将实问题数学化的一般方法,即建立数学模型的方法,同时,还要加强数学与其他学科的联系,除与传统学科如物理、化学联系外,可适当了解数学在经济学、管理学、工业等方面的应用。如果我们在数学学习中,既扎扎实实地学好了数学知识和技能,又牢固地掌握了数学思想和方法,而且能灵活应用数学知识和技能解决实问题,那么,我们就走在了一条数学学习成功的大道上。一人人都能学好数学数学对很多人来说是枯燥的、深奥的、抽象的,这是不争的事实,但不等于说就是难学的。有位数学名人说过:“掌握数学,就是善于解题,但不完全在于解题的多少,还在于解题前的分析、探索和解题后的深思穷究。”也就是说,解数学题不是要把自己当成解题的机器、解题的奴隶,而应该努力成为解题的主人,是要从解题中吸取解题的方法、思想,锻炼自己的思维,这就是所谓的“数学题要考查考生的能力”。那么解题前后该如何“分析探索”与“深思穷究”呢?实际上,世间万事万物都是相通的,不知道同学们是否喜欢语文?要想写一篇优秀的作文,必须审题、创意,要有写作提纲,这种创意须是来源于自己的生活,是自己亲身经历、所感所想的,靠杜撰绝对写不出好文章。那么解决一道数学题,也必须审题,要弄清题目的已知是什么?待求的是什么?这叫“有的放矢”。“的”就是要打开“已知”与“待求”之间的通道,就是“创意”,就是要利用自己现有的数学知识、解题方法沟通这种联系,或将问题化整为零、或将问题化为比较熟悉的问题。这种“创意”是一种长期数学思维的积淀,是自己解题经验的总结,是解题之后的感悟。因此,解题之后的总结是最不容忽视的。记得从小学开始,语文老师总是要求我们在阅读一篇文章之后说出它的中心思想,目的何在?我们做完一道数学题,也要想着总结它的中心思想:题目涉及到哪些知识点;解题中用到哪些解题方法或思想,以此与命题人“沟通”,才能达到“领悟”的境界。当然,解题后的总结,还应该考虑:问题是否可以有其它解法;是否可以进行推广用来解决与之相似的问题。只有做到“举一反三”,才能真得会“触类旁通”。总之,做任何学问都不能贪大求全,而应精益求精。二注意改进学习习惯 1知识掌握过程中的三种不良习惯忽略理解,死记硬背:认为只要记住公式、定理就万事大吉,而忽略了知识导出过程的理解,既造成提取应用知识的困难,更一次又一次地失去了对知识推导过程中孕含的思想方法的吸取。如三角公式“常记常忘,屡记不会”的根本原因就在于此,进而也谈不上用三角变换解题的自觉性了。注重结论,轻视过程:数学命题的特点是条件和结论之间紧密相联的因果关系,不注意条件的掌握,常会导致错误的结果,甚至是正确的结果、错误的过程。如学习中看不出何时需讨论、如何讨论。原因之一在于数学知识的前提条件模糊(如指对数函数的单调性,不等式的性质,等比数列求和公式,最值定理等知识)忽略及时复习和强化理解:“温故而知新”这一浅显的道理谁都懂,但在学习过程中持之以恒地应用者不多。由于在老师的精心诱导教诲下,每节课的内容好像都“懂”,因此也就舍不得花八至十分钟的“宝贵”时间回顾当天的旧知。殊不知课上的“懂”是师生共同参与努力的结果,要想自己“会”,必须有一个“内化”的过程,而这个过程必须从课内延伸到课外。切记从“懂”到“会”必须有一个自身“领悟”的过程,这是谁也无法取缔的过程。2解决问题过程中的四种不良心态 缺乏对已学习过的典型题目及典型方法的积累:部分同学做了大量的习题,但收效甚微,效果不佳。究其原因,是迫于压力为完成任务而被动做题,缺乏必要的总结和积累。在积累的基础上增强“题性”、“题感”,逐步形成“模块”,不断吸取其中的智育营养,方可感悟出隐藏于模式中的数学思想方法。这就是从量的积累到质的变化的过程,只有靠“积累消化吸收”才能“升华”。 在解决新问题时,缺乏探索精神:“学数学不做题目,等于入宝山而空返”(华罗庚语)。我们面对的社会,新的问题不断出现,无处不在,信息时代尤为如此。学习数学,需要在解决问题的实践中不断探索。怕困难、过份依赖老师,久而久之便会形成不积极钻研的习惯。我们在课堂教学中采用“先思后讲,先做后评”的方法,正是为激发学习者的积极主动的探索热情。希望同学们增强自信、勇于猜想、主动配合教师,使数学课堂教学成为学习者的思维活动的交流过程。 忽视解题过程的规范化,只追求答案:数学解题的过程是一个化归与转化的过程,当然离不开规范严谨的推理与判断。解题中跳跃太大、乱写字母、徒手作图,如此态度对待稍难的问题,是难以产生正确答案的。我们说解题过程的规范不只是规范书写,更主要是规范“思考方法”,同学们应该学会不断调控自己的思维过程,力争使解题尽善尽美。不注重算理,忽视对运算途径的选择与实施:数学运算是按规则进行的,通用的规则和通行的方法当然要牢固掌握。但静止的相对性和运动的绝对性又决定了数学解题中的通法不可能一成不变。因此,在运用通性、通法、通则解决问题时,不能忽视算理,更应注重对合理简捷运算途径的猜想、推断与选择,那种不假思索、顺水推舟的做题方法必须改进。用“看”题或“想”题代替“做”题的学习方法,是引起运算能力差、导致运算繁冗的根本原因。 3复习巩固中的三种错误认识 认为多做题可以代替复习理解:学好数学,做大量的配套练习是必要的。但只练不想、不思、不总结,未必有好结果。只会埋头做题,不会抬头思考的同学,虽然做了大量的题目,以往所学的知识也难以保持随机提取的状态,只有靠滚动式的总结,才能使知识永远“保态”,并且实现阶段性知识层次的飞跃。我们平时复习中的练习,阶段性的测试与月考,正是为了引导同学们多层次、全方位、多角度的复习理解,使知识连点成线构成网络。因此,善思考、勤总结是复习过程中必须的,也是知识和方法不断积累的有效途径。不注意知识间的联系和知识的系统性:高考数学科命题常在知识的交汇处考查学生综合应用知识的能力。如果我们仅靠单一的知识掌握,缺乏对知识间的联系与知识系统性的充分认识,必然会导致认识肤浅,综合能力差,当然很难取得良好的成绩。我们平时教学中的“前后兼顾”和“解题规律的总结”等均是为了强化知识间的联系,望引起同学们足够的重视。不善于纠正已犯过的错误:纠正错误的过程就是学习进步的过程,人类社会也是在与错误作斗争的过程中发展的。因此,善于纠错,及时总结经验教训也是学习的重要环节。部分同学对老师批改的作业常停留在“”和“”上,甚至熟视无睹;对试卷只问得分的多少,而不关心或很少关心为什么“错”。须知:回忆,不管是甜、是苦,总是有益的、美好的,总能鼓励自己更有信心地面向未来!改正错误的过程就是学习进步的过程。总之,课前预习做好心理准备;课上脑、耳、手、口协调作战,提高45分钟的吸取效益;课后复习总结,充分思考与内化。相信通过同学们积极主动的学习,一定会成为数学的主人。 如何学好数学1 数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考: 一、课内重视听讲,课后及时复习。新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。二、适当多做题,养成良好的解题习惯。要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。三、调整心态,正确对待考试。 首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。 如何学好数学2高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。 有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的工作报告,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。有些高一的同学觉得自己刚刚初中毕业,离下次毕业还有3年,可以先松一口气,待到高二、高三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的经验。殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中数学最重要、也是最难的内容(如函数、立几)放在高一年级学,这些内容一旦没学好,整个高中数学就很难再学好,因此一开始就得抓紧,那怕在潜意识里稍有松懈的念头,都会削弱学习的毅力,影响学习效果。 至于学习方法的讲究,每位同学可根据自己的基础、学习习惯、智力特点选择适合自己的学习方法,我这里主要根据教材的特点提出几点供大家学习时参考。 l、要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线yx对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(xl)f(1-x)时,函数y=f(x)的图象关于y轴对称,而 yf(xl)与 yf(1-x)的图象却关于直线 x1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。 2学习立体几何要有较好的空间想象能力,而培养空间想象能力的办法有二:一是勤画图;二是自制模型协助想象,如利用四直角三棱锥的模型对照习题多看,多想。但最终要达到不依赖模型也能想象的境界。 3、学习解析几何切忌把它学成代数、只计算不画图,正确的办法是边画图边计算,要能在画图中寻求计算途径。 4、在个人钻研的基础上,邀几个程度相当的同学一起讨论,这也是一种好的学习方法,这样做常可以把问题解决得更加透彻,对大家都有益。答一送一: 如何在学习上占第一学习上占第一,每个同学都可以做到。之所以你占不了第一,主要有两个原因:第一、生活方式、学习方法不正确,第二、没有坚强的毅力。在这里面毅力是第一重要的,学习方法是第二重要的。在现实生活中,全中国仍有70以上的占第一的学生虽然占了第一,但他们并不是毅力最强的,或者说学习方法生活方式不是最好的。他们也许今天是第一,明天就不是了。也就是说,你如果按占第一的方法去学习、去锻炼,一般都会超过现有的第一。 辉煌的第一是不是要经过艰苦的努力才能得到呢?说它艰苦是因为“培养坚强的毅力”是世上最艰苦的工作,只有你具有了坚强的毅力才可能成为第一,当然正确的生活方式和学习方法也是特别重要的。在这里什么是坚强的毅力呢,只要你能按下面几点要求去做,而且每天都做记录,持之以恒,每天都不间断地坚持一个学期、一年、三年,那么你的毅力就足以达到占第一的要求了。在这项锻炼中就怕你中间有间断,风雨、心情、疾病、家务等等都不是你中断锻炼的理由。你要记住,学好学业是你学生生活中最重要的,没有什么工作的重要性会超过它。除了坚强的毅力,正确的学习方法和生活方式也是很重要的。 第一人人可以占,原来占第一的同学也不一定就比你更聪明多少,脑细胞也不一定比你多。爱迪生不是说过“天才是百分之九十九的汗水加上百分之一的灵感”吗?!所以你第一要过心理关,就是说:要坚信你一定能成功,一定会超过现有的第一,包括现在是第一的你自已。 第二、你要天天锻炼。没有一个健康的身体,你什么事也做不好,即使偶尔做好了,也不能长久。每天30分钟左右的锻炼一定要天天坚持。锻炼的形式多种多样,跑步、打乒乓球、打篮球、俯卧撑、立定跳远等等都可以。有些同学好面子,见到别人不跑步,怕自已跑别人看见了不好意思,那就错了,真正不好意思的是辛苦了几年考不上大学,是上了几年大学还要下岗。如果将来自已养活不了自已,那才是真正不好意思的。 第三、学习态度要端正。每次上课前,一定要把老师准备讲的内容预习好,把不好理解的、不会的内容做好标记,在老师讲到该处时认真听讲。如果老师讲了以后还不会,一定要再问老师,直到明白为止。当一个问题问了两遍三遍还不会时,一般的同学就不好意思问了,千万别这样,老师们最喜欢“不问明白誓不罢休”的性格了。上课时要认真听讲,认真思考,做好笔记。做笔记时一定要清楚,因为笔记的价值比课本还,将来的复习主要靠它。 课下首先要做的不是做作业,而是把笔记、课本上的知识点先学好,该记的内容一定把它背熟。这样会大大提高你做作业的速度,即平常说的“磨刀不误砍柴功”。做作业时应该独立思考,实在不能解决的问题,再和同学、老师商量。问同学时,不要问这道题结果是什么,而是要问“这道题究竟怎么做?”“这道题为什么这样做?” 第四、正确面对错误和失败。当有的知识你没有在课上学会、当你的练习做错时或者在考试中成绩太差时,你既不要报怨,也不要气馁,你应该正视这自已不愿得到的现实。没有学会不要紧,把该知识写到你的备忘录中,然后问同学问老师,再把正确的解释或结果,写到其它页上。错了题也是这样,考试失利不就是错的题多点吗,正确的方法是把原题抄到备忘录中,把正确的做法学会后,把做法和结果写到其它页上,如果能注上做该类题的注意事项,就会把你的学习效率又提高3060。之所以把答案或解释写到其它页上,就是为了下次看知识点或错误的题目时,再动动脑筋,想想该知识点的理解和解释情况,再练练该题的做法和答案。错误和失败并不可怕,只要你能正视它,一切都会成为你成功的动力。 第五、记帐。你的学习一定要有一本帐,你什么时候做得好,记下来,什么时候错了题,记下来(注:帐本上只记“今天错题为备忘录页题改进数学复习的策略与技巧考生在高考冲刺最后阶段里,如何正确把握复习方向,夯实基础知识,注重调适考试心理,掌握答题技巧,取得满意高考成绩? 一、精读细研定方向,勤钻善思现高效考前复习应加强对考纲与近年考题的研究 新的考纲,既是高考命题的依据,也是高考总复习的依据;近年考题,代表着过去成功的命题经验,蕴藏着今后命题的规律与趋势.认真研读考纲,努力钻研考题,一定会使你的复习找准方向,减少无谓劳动,提高复习效益. 开始进入总复习时,学生应在老师的指导下,学习近年的高考试卷,明晰高考数学命题的基本走向.要认真学习一遍新的考纲,从宏观上准确掌握考纲序言中的精神和考试性质,准确掌握考试的内容,从微观上细心推敲以下几个内容: 1.细心推敲对高考内容三个不同层次的要求,要准确掌握哪些内容是要求了解的,哪些内容是要求理解或掌握的,哪些内容是要求灵活运用和综合运用的;2.细心推敲要考查的数学思想和数学方法各有哪些;3.细心推敲要考查的数学能力,为什么说思维能力、运算能力与空间想像能力称为数学能力,而把分析问题和解决问题的能力以及创新能力称为较高层次的能力;4.掌握近年来对某些知识要求的变化情况.到高考前一个月左右,应该再学习一遍考纲,看看哪些方面的复习与考纲的要求还有距离,以便及时查漏补缺、突出重点. 二、注重细节须规范,优化过程求准确考前复习应努力避免“两不”问题 所谓“两不”,就是“会而不对、对而不全”.有的考生基础尚可,拿到一道题目并非束手无策,而是在正确的思路上,或考虑不周,或推理不严,或书写不准,最后答案是不完整的甚至是错误的,这叫“会而不对”;有的考生解题思路大致正确,最终结论也出来了,但丢三落四或缺欠重要步骤,中间某一步逻辑点过不去;或遗漏某一极端情形,讨论不够完备;或是潜在假设;或是以偏概全等,这叫“对而不全”.会而不对,令人惋惜;对而不全,得分不高. 1.细节求完善,远离“会而不对” “会而不对”,是一直困扰学生的一个问题.其实学习“由不会到学会”是一个过程,再由“学会到做对”又是一个过程.后一个过程的完成需要付出更为细致艰辛的劳动.有一本畅销书细节决定成败中提到“把小事做细,伟大将不期而至”,这就是细节的魅力.同样高考的成败也与细节紧密相关.要想把看似简单的问题完成得完美,关键不是考试时的仔细、认真,而是平时对自己存在问题的较真.对平时练习中的失误,要小题大做,不仅要分析失误的原因,还要将这些失误记录在案,找出切实可行的解决方法,并再三反思,保证下次不再出错,切不可用“粗心”二字一带而过.只有这样,才能保证你在高考中“会而对”. 2.过程求优化,摒弃“对而不全” “对而不全”,也是一直困扰学生的一个问题,如:立体几何论证中的“跳步”,使很多人丢失了三分之一以上的得分;代数论证中“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转译为“文字语言”,得分亦少得可怜.因此,答题时必须追求过程的优化,确保运算的准确,做到条理的清晰.只有这样,才可确保在高考中“对而全”. 解题要规范,计算要准确,要努力做到“会又对、对又全、全又美”,这也正是我们孜孜以求的! 三、勤思善想为探究,深挖广拓激思维考前复习应加强对教材例习题的挖掘 很多考生在备考时,整天沉溺于各种复习资料尤其是数学模拟试卷或新颖的试题之中,而数学教科书则成了参考书或者干脆束之高阁,理由是“数学教科书没什么新的内容,它太简单了”.其实,任何解题方法都有其赖以产生的数学基础,而这个基础就是数学教科书的知识、结论、思想方法以及它们之间的内在联系.如果忽视教科书的基础作用与示范作用,虽然靠题海训练也可以记住很多重要方法,但这些方法彼此之间没有有机联系,是孤立的,且它往往只与某种单一类型的问题联系着.这就造成考生一旦遇到新颖问题,就难以触类旁通,想不到以什么方法去解决问题.这是当前考生中存在的突出问题,也是高考数学成绩上不去的关键.解决这个问题最有效、最根本的方法,就是发挥教科书的示范作用,把几本教科书所涉及到的结论与事实、思想与方法用它们内在的规律建构纵横联系、经纬分明的整体网络,也就是要解决好“是什么(知识结论问题),为什么(知识联系问题),怎么用(能力表现问题)”等三个层次问题. 例如,2004年上海卷(理)第11题是:教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是什么? 部分考生学完了解析几何却不知其本质是什么,可见学习的肤浅盲目性.课本中明确提出:平面解析几何研究的主要问题是:根据已知条件,求出表示平面曲线的方程;通过方程,研究平面曲线的性质.因此,解析几何的本质是:把几何问题代数化,图形性质坐标化,即用代数的方法研究图形的几何性质. 这道填空题的顺利求解,完全基于对教材的深入研读,完全依赖于对教材概念间的本质属性的深入挖掘,而这里对本质属性的理解与把握恐怕不是通过一份或几份综合试卷的练习就能实现的.因此在考前必须回归课本,认真研读教材,深入挖掘教材里概念的本质内涵与外延,不要让教材染上灰尘,不要让课本束之高阁,而是要把书本“嚼烂”“吃透”乃至“消灭”. 注重课本题的串联与改造,注重利用“织题成网、串题成链”的方式进行课本知识的复习,注重多题一解、一题多解和一题多变.多题一解有利于培养求同思维;一题多解有利于培养求异思维;一题多变有利于培养思维的灵活性与深刻性. 四、展示自我调心态,一路顺风创佳境考前复习应重视心理适应能力的训练 一道考题能否攻克,有时只有一步之遥,或一念之差.这有时是来自破题的灵感,有时就来自临场的心态意志.事实上,心理学和教育学的研究一再证明,应试心理状态,是决定考试成败的重要因素,有些考生原本基础还比较好,但考试成绩偏偏就是不理想,就是由于他们不健康的心理造成的:我的脑子不如他人聪明,学习不如他人用功,加之平时的自卑、羞怯、焦虑、恐惧等过重的心理负担在考试时作祟.为此,我们必须在考前养成一颗平常心,认真对待每一次成功与挫折甚至失败,不断自我充实并调整自己,增加“天生我材必有用”“给我一个支点,我将撬起整个地球”的信念,不断的体验出“我还行”“我也能行”的感叹,以良好的自信心,取得一次又一次的进步,赢得一个又一个的成功.我们要变“这道题我又不会”为“我又多做出了一道题”的想法,从而不断提高自己应试时的自信心.久而久之,良好的心理必定能形成,当遇新挫折时,必能及时地找到解救的良药战胜自我,忘掉自我,完善自我. 五、身临考场显技巧,争取高考超发挥考前赠你应试妙招,助你马到成功 俗话说,考试,七分靠基础,二分凭发挥,一分借运气.我们说,夯实基础在平时,发挥技巧在考前,把握运气在当时.因此,当你已坐在考场里时,你必须充分运用考试策略与答题技巧,争取“超水平发挥”. 1.学会临阵磨枪,搞好心理平衡 一般说来,高考前几天内就不要再做新的数学题目了.为了防止知识遗忘,搞好心理平衡,可以按照每章的“三基”知识,重新回顾一遍整个高中数学极易出错的知识点;看一看每章自己认为优秀的两三个例题.另外,进入考场前,应对各种可能遇到的困难都有所考虑,并针对试题的难易上可能出现的各种情况,制定出合理的应对策略,从而确保水平的正常发挥. 2.沉着冷静,先易后难 进入考场后,首先要沉着冷静,答题过程中不要受周围各种因素的干扰.拿到试卷后,应按照先易后难的原则,集中精力先解决第一、二两大题,少数做不出来的小题暂时留下来;然后解决第三大题的前两三个小题,把这两个步骤完成后,三分之二的分数已有希望,接下来就可满怀信心地去处理剩下的题目了,这样解答试题,往往能较好地发挥自己的正常水平. 3.重视审题和检验,防止失误和差错 总分对于考生来说是极其重要的,应该通过“少丢分”与“多得分”两条途径去争取. 防止差错的根本途径有两条:一是认真审题,对每道题首先要弄清题意,然后理清求解思路,最后再动笔去写.二是要学会“适时瞬检”,所谓“适时瞬检”就是在做到关键的步骤和极易出错的步骤时,立刻进行检查,这种做法较之“高速算完,再查一遍”的方法,不求速度过快,而是要“稳准快”,即稳中求准,准中求快;适时重点检查,边做边查,做完了也查完了,不但准确率高,而且速度也快.怎样突破120-高考数学题型分布与答题策略一、近年高考数学命题的中心是数学思想方法,考试命题有四个基本点1。在基础中考能力,这主要体现在选择题和填空题。2。在综合中考能力,主要体现在后三道大题。3。在应用中考能力,在选择填空中,会出现一、二道大众数学的题目,在大题中有一道应用题。4。在新型题中考能力。这“四考能力”,围绕的中心就是考查数学思想方法。二、题型特点1。选择题(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强。试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,绝不标新立异。(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容。在高考的数学选择题中,定量型的试题所占的比重很大。而且,许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴涵了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在。绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力,思辨性的要求充满题目的字里行间。(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它辨证统一起来。这个特色在高中数学中已经得到充分的显露。因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是:几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。(5)解法多样化:与其他学科比较,“一题多解”的现象在数学中表现突出。尤其是数学选择题,由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。2。填空题填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等。不过填空题和选择题也有质的区别。首先,表现为填空题没有备选项。因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足,对考生独立思考和求解,在能力要求上会高一些,长期以来,填空题的答对率一直低于选择题的答对率,也许这就是一个重要的原因。其次,填空题的结构,往往是在一个正确的命题或断言中,抽去其中的一些内容(既可以是条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活。在对题目的阅读理解上,较之选择题,有时会显得较为费劲。当然并非常常如此,这将取决于命题者对试题的设计意图。填空题的考点少,目标集中,否则,试题的区分度差,其考试信度和效度都难以得到保证。这是因为:填空题要是考点多,解答过程长,影响结论的因素多,那么对于答错的考生便难以知道其出错的真正原因。有的可能是一窍不通,入手就错了,有的可能只是到了最后一步才出错,但他们在答卷上表现出来的情况一样,得相同的成绩,尽管它们的水平存在很大的差异。3。解答题解答题与填空题比较,同属提供型的试题,但也有本质的区别。首先,解答题应答时,考生不仅要提供出最后的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明。填空题则无此要求,只要填写结果,省略过程,而且所填结果应力求简练、概括和准确。其次,试题内涵,解答题比起填空题要丰富得多。解答题的考点相对较多,综合性强,难度较高。解答题成绩的评定不仅看最后的结论,还要看其推演和论证过程,分情况评定分数,用以反映其差别,因而解答题命题的自由度,较之填空题大得多。三、高考试卷的深层结构根据题型特点,高考试卷的结构就十分明确了,我们将其分成三段:四、如何突破120分由于,基础中考能力,所以要注重解题的快法和巧法,能在30分钟左右,完成全部的选择填空题,这是夺取高分的关键。第二段是解答题的前三题,分值不到40分。这样前两个阶段的总分在110分左右。第三段是最后“三难”题,分值不到40分。“三难”题并不全难,难点的分值只有12分到18分,平均每道题只有4分到6分。首先,应在“三难”题中夺得12分到20分,剩下最难的步骤分在努力争取。这是根据试卷的深层结构做出的最佳解题策略。所以,只做选择,填空和前三道大题是不够全面的。因为,后“三难”题中的容易部分比前面的基础部分还要容易,所以我们应该志在必得。在复习的时候,根据自己的情况,如果基础较好那首先争取选择,填空前三道大题得满分。然后,再提高解答“三难”题的能力,争取“三难”题得分20分到30分。这样,你的总分就可以超过130分,向145分冲刺。所以最理想的得分计划是:五、从现在做起在平时当中一定要求自己选择填空一分钟一道题。用数学思想方法高速解答选择填空题。注意不要傻算傻解,要学会巧算和巧解。选择填空和前3道
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 主题8 海洋空间资源说课稿-2025-2026学年高中地理选择性必修3中图中华地图版
- 民宿经营合同模板及法律风险提示
- 机械厂刀具管理使用制度
- 塑料厂检测设备管理流程实施细则
- 机械厂锻造管理制度
- 建筑工程项目合同管理实操指南
- 农业生产技术转让及咨询服务合同
- 媒体广告投放与监测协议
- 婚纱摄影服务消费争议解决协议
- 农民合作社区开发协议
- 餐饮服务与数字化运营 习题及答案 项目六
- 天津地铁设备管理制度范文
- 跨学科整合的小学数学教学设计
- 人教版(2024)七年级下册英语期末复习:完形填空 专题练习题(含答案)
- 《电池管理系统BMS》课件
- DB33 1121-2016 民用建筑电动汽车充电设施配置与设计规范
- DB35∕T 88-2022 伐区调查设计技术规程
- 购物中心楼层调整规划
- 化学前沿研究动态(课件)
- 人教版八年级语文上册《新闻写作》示范公开教学课件
- 中医适宜技术-中药热奄包
评论
0/150
提交评论