已阅读5页,还剩45页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 1 Chapter1Introduction Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 2 LEARNINGOBJECTIVES Uponcompletingthischapter youshouldbeabletodothefollowing Explainwhatmultivariateanalysisisandwhenitsapplicationisappropriate Defineanddiscussthespecifictechniquesincludedinmultivariateanalysis Determinewhichmultivariatetechniqueisappropriateforaspecificresearchproblem Discussthenatureofmeasurementscalesandtheirrelationshiptomultivariatetechniques Describetheconceptualandstatisticalissuesinherentinmultivariateanalyses Chapter1Introduction Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 3 Whatisit MultivariateDataAnalysis allstatisticalmethodsthatsimultaneouslyanalyzemultiplemeasurementsoneachindividualorobjectunderinvestigation Whyuseit MeasurementExplanation PredictionHypothesisTesting WhatisMultivariateAnalysis Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 4 TheVariateMeasurementScalesNonmetricMetricMultivariateMeasurementMeasurementErrorTypesofTechniques BasicConceptsofMultivariateAnalysis Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 5 Thevariateisalinearcombinationofvariableswithempiricallydeterminedweights Weightsaredeterminedtobestachievetheobjectiveofthespecificmultivariatetechnique Variateequation Y W1X1 W2X2 WnXnEachrespondenthasavariatevalue Y TheY valueisalinearcombinationoftheentiresetofvariables Itisthedependentvariable PotentialIndependentVariables X1 incomeX2 educationX3 familysizeX4 TheVariate Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 6 TypesofDataandMeasurementScales Data MetricorQuantitative NonmetricorQualitative NominalScale OrdinalScale IntervalScale RatioScale Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 7 NonmetricNominal sizeofnumberisnotrelatedtotheamountofthecharacteristicbeingmeasuredOrdinal largernumbersindicatemore orless ofthecharacteristicmeasured butnothowmuchmore orless MetricInterval containsordinalproperties andinaddition thereareequaldifferencesbetweenscalepoints Ratio containsintervalscaleproperties andinaddition thereisanaturalzeropoint NOTE Thelevelofmeasurementiscriticalindeterminingtheappropriatemultivariatetechniquetouse MeasurementScales Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 8 Allvariableshavesomeerror Whatarethesourcesoferror Measurementerror distortsobservedrelationshipsandmakesmultivariatetechniqueslesspowerful Researchersusesummatedscales forwhichseveralvariablesaresummedoraveragedtogethertoformacompositerepresentationofaconcept MeasurementError Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 9 Inaddressingmeasurementerror researchersevaluatetwoimportantcharacteristicsofmeasurement Validity thedegreetowhichameasureaccuratelyrepresentswhatitissupposedto Reliability thedegreetowhichtheobservedvariablemeasuresthe true valueandisthuserrorfree MeasurementError Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 10 TypeIerror or istheprobabilityofrejectingthenullhypothesiswhenitistrue TypeIIerror or istheprobabilityoffailingtorejectthenullhypothesiswhenitisfalse Power or1 istheprobabilityofrejectingthenullhypothesiswhenitisfalse StatisticalSignificanceandPower Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 11 Effectsize theactualmagnitudeoftheeffectofinterest e g thedifferencebetweenmeansorthecorrelationbetweenvariables Alpha as issetatsmallerlevels powerdecreases Typically 05 Samplesize assamplesizeincreases powerincreases Withverylargesamplesizes evenverysmalleffectscanbestatisticallysignificant raisingtheissueofpracticalsignificancevs statisticalsignificance PowerisDeterminedbyThreeFactors Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 12 Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 13 ImpactofSampleSizeonPower Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 14 RulesofThumb1 1 1 1 1 H0 2 1 b 3 4 a n a 0 05 120 5 H0 m 120 H1 m 120 120 0 95 mH0 1 645 x s mH0 0 05 116 71 mH0 120 H0 H0 a 05 1 Hypotheses H0 m 120H1 m 120 Hypotheses H0 m 120H1 m 120 m1 112 mH0 120 H0 H0 a 05 2 m 1 112 m1 112 b 1 b 116 71 mH0 120 H0 H0 a 05 3 Hypotheses H0 m 120H1 m 120 m 1 112 m1 112 b 1 b 116 71 mH0 120 H0 H0 a 05 4 2 36 4 z z 12 36 116 71 112 Hypotheses H0 m 120H1 m 120 m 1 112 m1 112 b 1 b 116 71 mH0 120 H0 H0 a 05 5 z 2 355 b 0093 5b Hypotheses H0 m 120H1 m 120 m 1 112 m1 112 b 1 b 116 71 mH0 120 H0 H0 a 05 5 1 0 0093 9907 6 Hypotheses H0 m 120H1 m 120 50 1 00 75 25 H0 112 A 0 9907 50 1 00 75 25 112 C 9907 m H0 50 1 00 75 25 112 116 71 C D 5000 9907 m H0 50 1 00 75 25 112 116 71 C D 5000 9907 m H0 E 2595 118 Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 28 Dependencetechniques avariableorsetofvariablesisidentifiedasthedependentvariabletobepredictedorexplainedbyothervariablesknownasindependentvariables MultipleRegressionMultipleDiscriminantAnalysisLogit LogisticRegressionMultivariateAnalysisofVariance MANOVA andCovarianceConjointAnalysisCanonicalCorrelationStructuralEquationsModeling SEM TypesofMultivariateTechniques Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 29 Interdependencetechniques involvethesimultaneousanalysisofallvariablesintheset withoutdistinctionbetweendependentvariablesandindependentvariables PrincipalComponentsandCommonFactorAnalysisClusterAnalysisMultidimensionalScaling perceptualmapping CorrespondenceAnalysis TypesofMultivariateTechniques Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 30 SelectingaMultivariateTechnique Whattypeofrelationshipisbeingexamined dependenceorinterdependence Dependencerelationship Howmanyvariablesarebeingpredicted Whatisthemeasurementscaleofthedependentvariable Whatisthemeasurementscaleofthepredictorvariable Interdependencerelationship Areyouexaminingrelationshipsbetweenvariables respondents orobjects Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 31 TwoBroadTypesofMultivariateMethods Dependence analyzedependentandindependentvariablesatthesametime Interdependence analyzedependentandindependentvariablesseparately Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 32 MultipleRegressionandConjoint DiscriminantAnalysisandLogit MANOVAandCanonical CanonicalCorrelation DummyVariables Metric Nonmetric Metric Nonmetric Metric Nonmetric FactorAnalysis ClusterAnalysis NonmetricMDSandCorrespon denceAnalysis SelectingtheCorrectMultivariateMethod SEM CFA SeveralDependentVariables OneDependentVariable MetricMDS MultivariateMethods DependenceMethods InterdependenceMethods MultipleRelationships StructuralEquations Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 33 MultipleRegression asinglemetricdependentvariableispredictedbyseveralmetricindependentvariables Y X1 X2 Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 34 DiscriminantAnalysisWhatisit single non metric categorical dependentvariableispredictedbyseveralmetricindependentvariables Whyuseit ExamplesofDependentVariables Gender Malevs FemaleCulture USAvs OutsideUSAPurchasersvs Non purchasersMembervs Non MemberGood AverageandPoorCreditRisk Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 35 LogisticRegression Asinglenonmetricdependentvariableispredictedbyseveralmetricindependentvariables Thistechniqueissimilartodiscriminantanalysis butreliesoncalculationsmorelikeregression Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 36 MANOVA Severalmetricdependentvariablesarepredictedbyasetofnonmetric categorical independentvariables Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 37 CANONICALANALYSISSeveralmetricdependentvariablesarepredictedbyseveralmetricindependentvariables Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 38 isusedtounderstandrespondents preferencesforproductsandservices Indoingthis itdeterminestheimportanceofboth attributesandlevelsofattributes basedonasmallersubsetofcombinationsofattributesandlevels CONJOINTANALYSIS Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 39 TypicalApplications SoftDrinksCandyBarsCerealsBeerApartmentBuildings CondosSolvents CleaningFluids CONJOINTANALYSIS Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 40 StructuralEquationsModeling SEM Estimatesmultiple interrelateddependencerelationshipsbasedontwocomponents MeasurementModelStructuralModel Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 41 ExploratoryFactorAnalysis analyzesthestructureoftheinterrelationshipsamongalargenumberofvariablestodetermineasetofcommonunderlyingdimensions factors Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 42 groupsobjects respondents products firms variables etc sothateachobjectissimilartotheotherobjectsintheclusteranddifferentfromobjectsinalltheotherclusters ClusterAnalysis Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 43 ClusterAnalysisof EatingOut Questions Ieatatfastfoodrestaurantsatleastonceaweek Ipreferrestaurantswiththehighestqualityfood Ipreferrestaurantsthathavequickservice Iprefertoeatatrestaurantsthathaveaniceatmosphere Objective Identifygroupsthatmaximizeratioofbetweengroupsvariancelargewithingroupsvariancesmall 1 7 7 pointAgree DisagreeScale Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 44 Constructs TrustCommitmentCooperationLocusofControlJobSatisfactionTurnover High Medium Low OrganizationalCommitment Example ClusterAnalysis PolarExtremes removemiddlegroup s Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 45 MultidimensionalScaling identifies unrecognized dimensionsthataffectpurchasebehaviorbasedoncustomerjudgmentsof similaritiesorpreferencesandtransformstheseintodistancesrepresentedasperceptualmaps Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 46 CorrespondenceAnalysis usesnon metricdataandevaluateseitherlinearornon linearrelationshipsinanefforttodevelopaperceptualmaprepresentingtheassociationbetweenobjects firms products etc andasetofdescriptivecharacteristicsoftheobjects Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 47 EstablishPracticalSignificanceaswellasStatisticalSignificance SampleSizeAffectsAllResults KnowYourData StriveforModelParsimony LookatYourErrors ValidateYourResults GuidelinesforMultivariateAnalysis Copyright 2010PearsonEducation Inc publishingasPrentice Hall 1 48 Stage1 DefinetheResearchProblem Objectives andMultivariateTechnique s tobeUsedStage2 DeveloptheAnalysisPlanStage3 EvaluatetheAssumptionsUnderlyingtheMultivariateTechnique s Stage4 EstimatetheMultivariateModelandAssessOverallModelFitStage5 InterprettheVariate s Stage6 ValidatetheMultivariateModel AStructuredApproachtoMultivariateModelBu
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年项目质量监督合同
- 第十二课 关爱小鸟教学设计-2025-2026学年小学综合实践活动吉美版四年级下册-吉美版
- 2025年CAAC无人机理论考试题库及答案
- 2025年新版心肺复苏题库及答案
- 4 公民的基本权利和义务 (教学设计)-部编版道德与法治六年级上册
- 2025全国小学生学宪法讲宪法活动知识竞赛题库及答案
- 应急预案评审表(论证)记录
- 2025安全考试试题及答案
- 1.1正数和负数 (第1课时)教学设计 2024-2025学年人教版数学七年级上册
- 2025年信息技术等级证书考试试卷及答案
- 医院污水处理站服务外包项目投标方案(技术方案)
- 时事点评面试题及答案
- 装配式建筑混凝土构件深化设计任务预制柱的深化设计课件
- 物业公司安全生产事故应急预案汇编
- 绿色仓储的实施策略与计划
- 医院保安服务投标方案投标文件(技术方案)
- 如何拍一张好的照片课件
- 小学生冬季流感预防主题班会
- 2025年医疗机构人力资源外包服务合同样本
- 校家社协同育人专题家长培训
- 如何撰写证券研究报告
评论
0/150
提交评论