



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2.2用配方法求解一元二次方程教学设计教学目标:1经历配方法解一元二次方程的过程,获得解二元一次方程的基本技能2经历用配方法解二次项系数不为1的一元二次方程的过程,体会其中的化归思想3能利用一元二次方程解决有关的实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养分析问题、解决问题的意识和能力教学重点与难点:重点:用配方法熟练地解简单的数字系数不为1的一元二次方程难点:理解配方法的步骤教学过程:一、复习提问,导入新课活动内容:回顾配方法解二次项系数为1的一元二次方程的基本步骤问题1:什么叫配方法?怎样配方?处理方式:学生回答,学生的叙述能力不同,出现的遗漏或者表述不到位的地方,由其他同学补充;(1)通过配成完全平方式的方法,得到一元二次方程的根,这种解一元二次方程的方法称为配方法(2)移项、方程的两边同时加上一次项系数一半的平方、配成完全平方、直接开平方活动目的:回顾配方法的基本步骤,为本节课研究二次项系数不为1的二次方程的解法打下基础通过解方程使学生明白:不论方程的一次项系数是奇数还是偶数,只要通过配方把方程的一边变形为完全平方式,另一边变形为非负数,就可以求解另外可以检查学生作业的更正效果 为本节课继续学习用配方法解一元二次方程起承前启后作用二、合作学习,探究新知活动内容1:进一步熟练完全平方式(多媒体出示)问题1:将下列各式填上适当的项,配成完全平方式口头回答1x2+2x+_=(x+_)22x2-4x+_=(x-_)23x2+_+36=(x+_)24x2+10x+_=(x+_)25x2-x+_=(x-_)2问题2:请比较下列两个一元二次方程的联系与区别1x2+6x+8=0 23x2+18x+24=0处理方式:问题1学生口头回答,进一步强调方程的两边同时加上一次项系数一半的平方;问题2学生不一定能立刻发现二次项系数的不同,可以引导学生观察之前处理的方程的特点以及讲解时强调的二次项系数问题,例如2x2-6x+90能写成完全平方式吗?活动目的:通过对第一部分的五个口答练习题的训练,熟悉完全平方式的三项与平方形式的联系,调动了各自的思维,进入了积极学习的状态,第二部分的两个习题之间的区别是方程2的二次项系数为3,不符合上节课解题的基本形式,联系是当方程两边同时除以3以后,这两个方程式同解方程学生们作了方程的变形以后,对二次项系数不为1的方程的解法有了初步的感受和思路活动内容2:讲解例题,例2 解方程3x2+8x-3=0处理方式:先给学生一定时间观察思考,然后找两个学生尝试答题,然后教师根据出现的问题纠正教师也可借助多媒体展示解答过程来纠正解:方程两边都除以3,得移项,得配方,得: 设计意图:通过对例2的讲解,继续拓展规范配方法解一元二次方程的过程让学生充分理解掌握用配方法解一元二次方程的基本思路,关键是将方程转化成形式,特别强调当一次项系数为分数时,所要添加常数项仍然为一次项系数一半的平方,理解这样做的原理,树立解题的信心另外得到后,在移项得到,要注意符号问题,这一步在计算过程中容易出错活动内容:3:巩固练习,总结步骤1、巩固练习:解方程(1)3x2-9x+2=0;(2)2x2+6=7x2、尝试总结用配方法解一元二次方程的步骤处理方式:问题1学生到黑板板书,问题2 小组讨论交流,然后代表发言,然后教师总结。用配方法解一元二次方程的步骤:(1)把二次项系数化为1,即方程两边同时除以二次项系数(2)移项,方程的一边为二次项和一次项,另一边为常数项(3)方程两边同时加上一次项系数一半的平方(4)方程变形为(x+m)2=n的形式(5)如果右边是非负实数,就用直接开平方法解这个一元二次方程;如果右边是一个负数,则方程在实数范围内无解设计意图:通过练习巩固例题效果,进一步感知解方程的步骤方法,培养学生学生总结归纳能力和语言表达能力三、学以致用,解决问题活动内容:课本38页做一做一小球以15m/s的初速度竖直向上弹出,它在空中的高度h(m)与时间t(S)满足关系:h=15t-5t2,小球何时能达到10米的高度?处理方式:学生分析题目意思,明白10是哪个字母的值,然后得到方程再解方程,在得到方程的两个根之后,让学生感知产生两个根的原因以及实际意义,进一步感受方程模型的作用学生板书步骤,教师规范步骤解:根据题意得 15t-5t2=10方程两边都除以-5,得 t2-3t=-2配方,得 设计意图:在前边学习的基础上,通过做一做进一步提高学生分析问题,解决问题的能力,帮助学生熟练掌握配方法在实际问题中的应用,也为后续学习做好铺垫四、回顾反思,提炼升华同学们,通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再分享给大家学生畅谈自己的收获!设计意图:课堂总结是知识沉淀的过程,使学生对本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年终止不定期劳动合同的规定与操作流程
- 项目立项案例题目及答案
- 叉车考试科目一的题目及答案
- 物体打击试题及答案
- 2024译林版八年级英语上册Unit 1 课时4 Grammar 分层作业(含答案)
- 营销策划岗位知识培训课件
- 2025年高考化学试题分类汇编:化学实验基础(解析版)
- 物流考试试题及答案2025
- 2025型钢租赁合同
- 物流的试题及答案
- T/CCS 063-2023井工煤矿智能化供排水系统运维管理规范
- DB36-T1694-2022-餐厨垃圾集约化养殖黑水虻技术规程-江西省
- 超市卫生管理规范培训
- 国际压力性损伤溃疡预防和治疗临床指南(2025年版)解读
- 中学生心理辅导活动课教案(合集)
- 《心律失常的诊断和治疗》课件
- 委托运营合作合同协议
- 违章作业培训课件
- 软件行业薪酬管理制度
- 门急诊管理制度
- 2025年中级消防设施操作员(维保)模拟试题题库(附答案)
评论
0/150
提交评论