




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
旋转变换1. 旋转变换的概念:在平面内,将一个图形G绕着一个定点O沿某个方向(顺时针或逆时针)转动一定的角度,得到另一个图形G,这样由图形G到图形G的图形变换叫做旋转。这个定点O叫旋转中心,转动的角称为旋转角。三要素注:旋转变换的三要素:旋转中心,旋转方向,旋转角。2. 旋转变换的性质:(1)旋转前、后的图形全等;(2)对应点到旋转中心的距离相等(意味着:旋转中心在对应点连线段的垂直平分线上)(3)对应点与旋转中心连线所成的角彼此相等,他们都等于旋转角。三等3. 旋转变换的作图:四部曲(1) 确定旋转中心、旋转方向和旋转角度;(2) 找出能确定图形的关键点;(3) 连结图形的关键点与旋转中心,并按旋转的方向分别将它们转动一个固定的角度,得到此关键点的对应点;(4) 按原图形的顺序连结这些对应点,所得图形就是旋转后的图形。提问:一定的角度的范围?4. 旋转对称图形:如果某图形绕着某一定点旋转一定角度(大于0小于360)后能与自身重合,那么这种图形就叫做旋转对称图形。特殊应用:求角度、求弧长、求面积、证明线段相等、证明角相等、证明位置关系、求函数解析式解题关键:要抓住图形变换过程中的几何不变性即旋转不变性、数值不变性等等【例题详解】例1、 图1是边长分别为4和3的两个等边三角形纸片ABC和CDE叠放在一起(C与C重合).(1)操作:固定ABC,将CDE绕点C顺时针旋转30得到CDE,连结AD、BE,CE的延长线交AB于F(图2);探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论.(4分)(2)操作:将图2中的CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的CDE设为PQR(图3);探究:设PQR移动的时间为x秒,PQR与ABC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值范围.(5分)(3)操作:图1中CDE固定,将ABC移动,使顶点C落在CE的中点,边BC交DE于点M,边AC交DC于点N,设AC C=(3090)(图4);探究:在图4中,线段CNEM的值是否随的变化而变化?如果没有变化,请你求出CNEM的值,如果有变化,请你说明理由.(4分)例2 将两块含30角且大小相同的直角三角板如图1摆放。(1)将图1中绕点C顺时针旋转45得图2,点与AB的交点,求证:;(2)将图2中绕点C顺时针旋转30到(如图3),点与AB的交点。线段之间存在一个确定的等量关系,请你写出这个关系式并说明理由;(3)将图3中线段绕点C顺时针旋转60到(如图4),连结,求证:AB.图1例3已知正方形ABCD的边长AB=k(k是正整数),正PAE的顶点P在正方形内,顶点E在边AB上,且AE=1. 将PAE在正方形内按图1中所示的方式,沿着正方形的边AB、BC、CD、DA、AB、连续地翻转n次,使顶点P第一次回到原来的起始位置.(1)如果我们把正方形ABCD的边展开在一直线上,那么这一翻转过程可以看作是PAE在直线上作连续的翻转运动. 图2是k=1时,PAE沿正方形的边连续翻转过程的展开示意图. 请你探索:若k=1,则PAE沿正方形的边连续翻转的次数n= 时,顶点P第一次回到原来的起始位置.(2)若k=2,则n= 时,顶点P第一次回到原来的起始位置;若k=3,则n= 时,顶点P第一次回到原来的起始位置.图2(3)请你猜测:使顶点P第一次回到原来的起始位置的n值与k之间的关系(请用含k的代数式表示n).例4操作:在ABC中,ACBC2,C900,将一块等腰三角形板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点。图,是旋转三角板得到的图形中的3种情况。研究:(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系?并结合图加以证明。(2)三角板绕点P旋转,是否能居为等腰三角形?若能,指出所有情况(即写出PBE为等腰三角形时CE的长);若不能,请说明理由。(3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图加以证明。图1图2例5、已知,点P是正方形ABCD内的一点,连PA、PB、PC.(1)将PAB绕点B顺时针旋转90到PCB的位置(如图1).设AB的长为a,PB的长为b(ba),求PAB旋转到PCB的过程中边PA所扫过区域(图1中阴影部分)的面积;若PA=2,PB=4,APB=135,求PC的长.(2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上.圆综合复习【知识重点】1. 垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧,平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。2. 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。3. 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。半圆(或直径)所对的圆周角是直角,的圆周角所对的弦是直径。 4. 点和圆的位置关系,设O半径为,点P到圆心的距离。 则有:点P在O外;点P在O上;点P在O内。 5. 不在同一直线上的三个点确定一个圆。 6. 直线和圆的位置关系,设O半径为,直线到圆心O的距离为。则有:直线和O相交;直线和O相切;直线和O相离。 7. 切线的性质和判定:经过半径的外端并且垂直于这条半径的直线是圆的切线,圆的切线垂直于过切点的半径。 8. 切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。 9. 圆和圆的位置关系,如果两圆的半径分别为和()圆心距为,则有:两圆外离;两圆外切;两圆相交;两圆内切;两圆内含。 10. 弧长、扇形面积:在半径为R的圆中,圆心角所对的弧长为,则,【典型例题】例1 如图正方形ABCD边长为4cm,以正方形一边BC为直径在正方形ABCD内作半圆,再过A点作半圆的切线,与半圆切于F点,与CD交于E点,求的面积。 例2 已知O1与O2交于A、B两点,且点O2在O1上,(1)如图1,AD是O2直径,连结DB并延长交O1于C,求证:CO2AD;(2)如图2如果AD是O2的一条弦,连结DB并延长交O1于C,那么CO2所在直线是否与AD垂直?证明你的结论。 图1 图2 例3 已知O中,AB为直径,OC弦BE于D,交O于C,若O半径为5,BE=8,求AD的长?例4 蒙古包可以近似地看作由圆锥和圆柱组成,如图已知,底面圆面积为,现要用毛毡搭建20个这样的蒙古包,至少需要用多少平方米毛毡?例5 如图,PA、PB切O于A、B,AC为O直径,(1)连接OP,求证:OP/BC;(2)若,则AC的长是多少?例6 问题:要将一块直径为2m的半圆形铁皮加工成一个圆柱的两个底面和一个圆锥的底面,操作:方案一:在图甲中,设计一个使圆锥底面最大,半圆形铁皮得以最充分利用的方案(要求:画出示意图);方案二:在图乙中,设计一个使圆柱两个底面最大,半圆形铁皮得以最充分利用的方案(要求:画出示意图)。探究:(1)求方案一中圆锥底面的半径;(2)求方案二中圆锥底面及圆柱底面的半径;(3)设方案二中半圆圆心为O,圆柱两个底面的圆心为O1、O2,圆锥底面的圆心为O3,试判断以O1、O2、O3、O为顶点的四边形是什么样的特殊四边形,并加以证明。课后练习1、等腰ABC,AB=AC=,BAC=120,P为BC的中点,小慧拿着含300角的透明三角板,使300角的顶点落在点P,三角板绕P点旋转(1)如图a,当三角板的两边分别交AB、AC于点E、F时求证:BPECFP;(2)操作:将三角板绕点P旋转到图b情形时,三角板的两边分别交BA的延长线、边AC于点E、F 探究:BPE与CFP还相似吗?(只需写出结论) 探究:连结EF,BPE与PFE是否相似?请说明理由; 设EF=m,EPF的面积为S,试用m的代
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高校餐饮服务合同模板(3篇)
- 目标练:去括号法则的应用
- qcc知识考试题及答案
- 教育机构劳动合同中教师薪资及补贴发放协议
- 2025公务员温州面试题及答案
- 央美考研专业试题及答案
- 计算机专业线上试题及答案
- 2025至2030中国园林绿化产品行业运营态势与投资前景调查研究报告
- 小班下学期副班工作总结
- 初中现代诗歌教学课件
- 2025年青海省中考道德与法治试题卷(含答案解析)
- 2025广西公需科目培训考试答案(90分)一区两地一园一通道建设人工智能时代的机遇与挑战
- 2025年检测员上岗证试题及答案
- 包装现场管理培训
- 企业安全生产体系五落实五到位规定的内容
- 肺结核心理指导健康教育
- 石家庄高速考试试题及答案
- 道路养护工程材料供应保障及进度措施
- 消除母婴三病传播培训课件
- 氢能场站泄漏检测要点
- 小儿心律失常的护理讲课件
评论
0/150
提交评论