分式方程应用题中考题集.doc_第1页
分式方程应用题中考题集.doc_第2页
分式方程应用题中考题集.doc_第3页
分式方程应用题中考题集.doc_第4页
分式方程应用题中考题集.doc_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

分式性质及运算【基础精讲】 一、分式的概念1、正确理解分式的概念:【例1】有理式(1); (2); (3); (4);(5);(6)中,属于整式的有: ;属于分式的有: 。.2、判断分式有无意义关键是看分母是否为零.(1) 例如,当x为 时,分式有意义错解:时原分式有意义(2) 不要随意用“或”与“且”。例如 当x_时,分式有意义?错解:由分母,得3、注意分式的值为零必受分母不为零的限制当 时,分式有意义当 时,分式无意义当 时,分式值为0二、分式的基本性质:1、分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.(1) 分式的基本性质是分式恒等变形的依据,它是分式的约分、通分、化简和解分式方程基础,因此,我们要正确理解分式的基本性质,并能熟练的运用它理解分式的基本性质时,必须注意:分式的基本性质中的A、B、M表示的都是整式在分式的基本性质中,M0分子、分母必须“同时”乘以M(M0),不要只乘分子(或分母)性质中“分式的值不变”这句话的实质,是当字母取同一值(零除外)时,变形前后分式的值是相等的。但是变形前后分式中字母的取值范围是变化的(2)注意:根据分式的基本性质有:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变分式的基本性质是一切分式运算的基础,分子与分母只能同乘以(或除以)同一个不等于零的整式,而不能同时加上(或减去)同一个整式【例3】下列变形正确的是( )A; B C D【例4】 如果把分式中的都扩大3倍,那么分式的值一定( ) A.扩大3倍 B.扩大9倍 C. 扩大6倍 D.不变2、约分约分是约去分式的分子与分母的最大公约式,约分过程实际是作除法,目的在于把分式化为最简分式或整式,根据是分式的基本性质.【例5】(1)化简的结果为( )A B C D(2)化简的结果()A B C D(3)化简的结果是()A BC D3、通分通分的依据是分式的基本性质,通分的关键是确定最简公分母.最简公分母由下面的方法确定:(1)最简公分母的系数,取各分母系数的最小公倍数;(2)最简公分母的字母,取各分母所有字母的最高次幂的积;三、分式的运算1、分式运算时注意:(1)注意运算顺序例如,计算,应按照同一级运算从左到存依次计算的法则进行错解:原式(2)通分时不能丢掉分母例如,计算,出现了这样的解题错误:原式=分式通分是等值变形,不能去分母,不要同解方程的去分母相混淆;(3)忽视“分数线具有括号的作用”:分式相减时,若分子是多项式,其括号不能省略 (4)最后的运算结果应化为最简分式2、分式的乘除注意分式的乘除法应用关键是理解其法则.(1)先把除法变为乘法;(2)接着对每个相乘的分式的分子、分母进行因式分解,当然有乘方运算要先算乘方,然后同其它分式进行约分;(3)再把每个分式的分子与分子相乘、分母与分母相乘;(4)最后还应检查相乘后的分式是否为最简分式 3、加减的加减 1)同分母分式加减法则:分母不变,分子相加减。 2)异分母分式加减法则:运算步骤:先确定最简公分母;对每项通分,化为分母相同; 按同分母分式运算法则进行;注意结果可否化简,化为最简4、分式的混合运算注意分式的混合运算的顺序:先进行乘方运算,其次进行乘、除运算,再进行加、减运算,遇有括号,先算括号内的.如果分式的分子或分母中含有多项式,并且能分解因式,可先分解因式,能约分的先约分,再进行运算. 【例6】计算:(1); (2);(3) (4)已知,则代数式的值【分类解析】 一、分式运算的几种技巧1、先约分后通分技巧例1 计算+2、分离整数技巧例2 计算-3、裂项相消技巧例3 计算+4、分组计算技巧例4 计算+-5、变形技巧例5 已知x2-3x+1=0,求x2+的值。二、分式求值中的整体思想例1 若分式的值为,则的值为( )A、1 B、-1 C、- D、例2 已知+=4,则= 。例3 已知a2-3a+1=0,求的值。例4 已知+=,+=,+=,求的值。例5 有一道题:“先化简再求值:,其中”,小明做题时把“”错抄成了“”,但他的计算结果也是正确,请你通过计算解释这是怎么回事?例6 已知x2-3x+1=0,求x2+的值。三、分式运算新型题例2 请利用、 和这三个分式组成一个算式,来表示其中两个分式的商减去第三个分式的差,并化简.例3 先化简代数式,然后选取一个合适的值,代入求值.一、开放性问题例1在下列三个不为零的式子 中,任选两个你喜欢的式子组成一个分式是 ,把这个分式化简所得的结果是 .分析:此例是答案不唯一的开放题,分式由学生自主构造,题型新颖活泼,呈现出人性化与趣味化.解:本题存在6种不同的结果,任选其一即可.(1);(2);(3); (4);(5);(6) .二、探索运算程序例2任意给定一个非零数,按下列程序计算,最后输出的结果是( ) 平方 - +2 结果 A B C+1 D-1 三、自选数值求解例3化简,并选择你最喜欢的数代入求值四、运算说理题例4在解题目:“当时,求代数式的值”时,聪聪认为只要任取一个使原式有意义的值代入都有相同结果你认为他说的有理吗?请说明理由分析:本题是说理型试题,有很强的创新性,但将其转化为代数式的化简与求值,解决问题就很方便,同时要注意说的“理由”要充分合理.解:聪聪说的有理 只要使原式有意义,无论取何值,原式的值都相同,为常数1说明:解决此类问题,首先要化简所给的代数式,然后再根据化简的结果去解释题目所问的问题.先观察下列等式,然后用你发现的规律解答下列问题 (1) 计算 (2)探究 (用含有的式子表示)(3)若 的值为,求的值【精练】计算:1顺次相加法例1:计算:2整体通分法【例2】计算:3化简后通分4巧用拆项法例4计算:.5分组运算法例5:计算:二、经典例题透析类型一:分式及其基本性质1当x为任意实数时,下列分式一定有意义的是( )A. B. C. D. 2若分式的值等于零,则x_; 3求分式的最简公分母。【变式1】(1)已知分式的值是零,那么x的值是( )A1B0C1D (2)当x_时,分式没有意义【变式2】下列各式从左到右的变形正确的是( )A B CD类型二:分式的运算技巧(一) 通分约分4化简分式:【变式1】顺次相加法 计算:【变式2】整体通分法 计算:(二)裂项或拆项或分组运算5巧用裂项法计算:【变式1】分组通分法计算:【变式2】巧用拆项法计算: 类型三:条件分式求值的常用技巧6参数法 已知,求的值【变式1】整体代入法 已知,求的值.【变式2】倒数法:在求代数式的值时,有时出现条件或所求分式不易变形,但当分式的分子、分母颠倒后,变形就非常的容易,这样的问题适合通常采用倒数法已知:,求的值【变式3】主元法:当已知条件为两个三元一次方程,而所求的分式的分子与分母是齐次式时,通常我们把三元看作两元,即把其中一元看作已知数来表示其它两元,代入分式求出分式的值已知:,求的值类型四:解分式方程的方法解分式方程的基本思想是去分母,课本介绍了在方程两边同乘以最简公分母的去分母的方法,现再介绍几种灵活去分母的技巧(一)与异分母相关的分式方程7解方程=【变式1】换元法 解方程:(二)与同分母相关的分式方程8解方程【变式1】解方程 【变式2】解方程类型五:分式(方程)的应用9甲、乙两个小商贩每次都去同一批发商场买进白糖.甲进货的策略是:每次买1000元钱的糖;乙进货的策略是每次买1000斤糖,最近他俩同去买进了两次价格不同的糖,问两人中谁的平均价格低一些?【变式1】 甲开汽车,乙骑自行车,从相距180千米的A地同时出发到B若汽车的速度是自行车的速度的2倍,汽车比自行车早到2小时,那么汽车及自行车的速度各是多少?【变式2】 A、B两地路程为150千米,甲、乙两车分别从A、B两地同时出发,相向而行,2小时后相遇,相遇后,各以原来的速度继续行驶,甲车到达B后,立即沿原路返回,返回时的速度是原来速度的2倍,结果甲、乙两车同时到达A地,求甲车原来的速度和乙车的速度【主要公式】1.同分母加减法则:2.异分母加减法则:;3.分式的乘法与除法:,4.同底数幂的加减运算法则:实际是合并同类项5.同底数幂的乘法与除法;am an =am+n; am an =amn6.积的乘方与幂的乘方:(ab)m= am bn , (am)n= amn7.负指数幂: a-p= a0=18.乘法公式与因式分解:平方差与完全平方式(a+b)(a-b)= a2- b2 ;(ab)2= a22ab+b2(一)、分式定义及有关题型题型一:考查分式的定义【例1】下列代数式中:,是分式的有:.题型二:考查分式有意义的条件【例2】当有何值时,下列分式有意义(1)(2)(3)(4)(5)题型三:考查分式的值为0的条件【例3】当取何值时,下列分式的值为0. (1)(2)(3)题型四:考查分式的值为正、负的条件【例4】(1)当为何值时,分式为正;(2)当为何值时,分式为负;(3)当为何值时,分式为非负数.练习:1当取何值时,下列分式有意义:(1)(2)(3)2当为何值时,下列分式的值为零:(1)(2)3解下列不等式(1)(2)(二)分式的基本性质及有关题型1分式的基本性质:2分式的变号法则:题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)(2)题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)(2)(3)题型三:化简求值题【例3】已知:,求的值.提示:整体代入,转化出.【例4】已知:,求的值.【例5】若,求的值.练习:1不改变分式的值,把下列分式的分子、分母的系数化为整数.(1)(2)2已知:,求的值.3已知:,求的值.4若,求的值.5如果,试化简.(三)分式的运算题型一:通分【例1】将下列各式分别通分.(1); (2);(3); (4)题型二:约分【例2】约分:(1);(3);(3).题型三:分式的混合运算【例3】计算:(1);(2);(3);(4);(5);(6);(7)题型四:化简求值题【例4】先化简后求值(1)已知:,求分子的值;(2)已知:,求的值;(3)已知:,试求的值.题型五:求待定字母的值【例5】若,试求的值.练习:1计算(1);(2);(3);(4);(5);(6);(7).2先化简后求值(1),其中满足.(2)已知,求的值.3已知:,试求、的值.4当为何整数时,代数式的值是整数,并求出这个整数值.(四)、整数指数幂与科学记数法题型一:运用整数指数幂计算【例1】计算:(1)(2)(3)(4)题型二:化简求值题【例2】已知,求(1)的值;(2)求的值.题型三:科学记数法的计算【例3】计算:(1);(2).练习:1计算:(1)(2)(3)(4)2已知,求(1),(2)的值.(一)分式方程题型分析题型一:用常规方法解分式方程【例1】解下列分式方程(1);(2);(3);(4)提示易出错的几个问题:分子不添括号;漏乘整数项;约去相同因式至使漏根;忘记验根.题型二:特殊方法解分式方程【例2】解下列方程(1); (2)提示:(1)换元法,设;(2)裂项法,.【例3】解下列方程组题型三:求待定字母的值【例4】若关于的分式方程有增根,求的值.【例5】若分式方程的解是正数,求的取值范围.提示:且,且.题型四:解含有字母系数的方程【例6】解关于的方程提示:(1)是已知数;(2).题型五:列分式方程解应用题练习:1解下列方程:(1);(2);(3);(4)(5)6)(7)2解关于的方程:(1);(2).3如果解关于的方程会产生增根,求的值.4当为何值时,关于的方程的解为非负数.5已知关于的分式方程无解,试求的值.(二)分式方程的特殊解法一、交叉相乘法例1解方程:二、化归法例2解方程:三、左边通分法例3:解方程:四、分子对等法例4解方程:五、观察比较法例5解方程:六、分离常数法例6解方程:七、分组通分法例7解方程:例1若分式方程无解,求的值。例2若关于的方程不会产生增根,求的值。例3若关于分式方程有增根,求的值。例4若关于的方程有增根,求的值。分式求值问题全解1. 字母代入法例1. b=a+1,c=a+2,d=a+3,求的值.【解析】 仔细观察已知条件,虽然出现的字母很多,但都可以用一个字母代替: a=a,b=a+1,c=a+2,d=a+3所以可以用一个字母代替其它字母来实现代数式的化简= = = = =【探讨】 当已知条件中不同的字母都可以用一个字母表示时,第一个要想到的方法就是字母带入法,因为最后的结果一定是由有理数或者某个字母表示,所以用这种方法能不能得到正确结果就在于自己的分式化简能力了。2. 设值代入法 例2. 已知,求证:【解析】这道题也可以用字母代入法,可以得到,代入后分式的分子分母中有分式,化简麻烦。我们用一种新的代入方式,考虑到、连等,让它们都等于k 则 x=ak y=bk z=ck 代入得 = = =【探讨】 当遇到连等式,可以采用以下三种方式来运用这个条件 设 则(1), (2)设 则x=ak y=bk z=ck (3)设 则 其中3. 整式代入法例3. 已知:,求分式的值.【解析】如果用字母代入法,要用b代替a本来就比较复杂,会增加我们化简的负担。将条件化简成乘积形式,得 ,再将分式稍化简变为,可以发现分子分母中只有(a-b)和ab这两项,所以可以用ab代替b-a 【探讨】用整式代入法,能够很大程度地化简代数式,比字母代入法更优越,但要善于观察代数式的组成部分,比如这题,代数式就含有ab和a-b这两项,刚好条件也适当变形能得到a-b与ab的关系,题目很快就解出来了。4. 变形代入法 这类题是用代入法最需要技巧的,我们分以下五类题型来分析怎么变形再代入。例4(方程变形). 已知a+b+c=0,a+2b+3c=0,且abc0,求的值.例5(非负变形). 已知:,求的值.例6(对应变形). 证明:若a+b+c=0,则 例7(倒数变形). 已知求证例8(归类变形). 已知,且a、b、c互不相等,求证:【解析】已知条件有三个字母,两个方程,若用a表示b、c,能不能求出b、c的代数式都是问题。因此我们变形不要太过着急,如果从消元化简的方式不能变形,就考虑从结构化简的方式来变形。这道题条件的形式不复杂,分为整式和分式,将整式归类,分式归类:,可以发现分式形式大致消失了,剩下的是加减形式(a-b)、(b-c)和乘积形式bc将能从已知条件得到的关系列出来,左边和左边相乘,右边和右边相乘得,所以【结论】给已知条件变形是用代入法的前提,变形的目的是化简已知条件,可以从两个角度上来化简: 消元的角度:方程变形、非负变形-减少字母数量,方便化简化简 结构的角度:对应、倒数、归类变形-调整关系式结构,方便化简代入的方法多种多样,在此不可能一一列举出来,对大部分题目,观察代数式,对已知条件适当变形再代入是最适用的方法,当然也有例外,比如习题4,代数式并不是最简形式,可以先化简代数式再代用条件,事办功倍。【练习】1、已知 的值等于( ) (设值代入)A B. C. D. 2、若a2+b2=3ab,则(1+的值等于( ) (整式代入)A B. 0 C. 1 D. 3、已知:a+b+c=0,abc=8.求证:0. (非负变形)4、已知:a+b+c=0. 求证: (代数式归类变形)5、已知abc=1,求证:(对应变形)复习引入:1.计算:2723=_,a9a4=_;(由学生用数学式子表示上述同底数幂的除法法则,并指出其中字母的规定,强调指数是正整数,底数不等于零)2.思考:2225=_;a2a4=_;在学生独立思考的基础上,让学生猜测计算的结果,并请学生讲解计算的过程及依据,体验分数与除法的关系;然后进一步提出“如何用幂的形式表示计算结果”的问题、二学习新课:整数指数幂及其运算1负整数指数幂的概念:(a0,p是自然数)2整数指数幂:当a0时,就是整数指数幂,n可以是正整数、负整数和零将下列各式写成只含正整数指数幂的形式:、变式训练1:、变式训练2:、通过变式训练2,学生同桌讨论当指数为负数,底数为分数时的情形,并总结出判断正误:例题讲解:例题1 计算:(1)2628;(2)1010110104;(3)512512。例题2 将下列各式写成只含有正整数指数幂的形式:(1) x-3;(2) a-3b4;(3) 2(x+2y)-2;例题3计算:(1)a2aa3;(2)(-a)3a5;3整数指数幂的运算性质:举例复习正整数指数幂的其它性质,同时思考、验证整数指数幂的相关运算法则:归纳整数指数幂的运算性质:(1)同底数幂的乘法性质:aman=am+n;(2)积的乘方性质:(ab)m=ambm;(3)幂的乘方性质:(am)n=amn;(上述性质中a、b都不为0,m、n都为整数)例题4计算:(1)x-5x2;(2)(2-2)3;(3)1003-3;一、课前预习 (5分钟训练)1.下列计算正确的是( )A.(2)0=1 B.23=8 C.2(3)=5 D.32=92.填空:(1)aa5=_;(2)a0a3=_;(3)a1a2=_;(4)aman=_.3.填空:(1)aa4=_;(2)a0a2=_;(3)a1a3=;(4)aman=_.4.某种细菌的长约为0.000 001 8米,用科学记数法表示为_.二、课中强化(10分钟训练)1.下列计算正确的是( )A.(a2)3=a5 B.(a2)3=a5 C.()1+(+3.14)0=2 D.a+a2=a12.(1)(a1)2=_(a0);(2)(a2b)2=_(ab0);(3)()1=_(ab0).3.填空:(1)52=_;(2)(3a1b)1=_(ab0).4.计算:(1)()2()2; (2)(3)533. (3)a2b2(ab1); (4)()2(xy)2(x1y).6.我们常用“水滴石穿”来说明一个人只要持之以恒地做某件事,就一定能成功.经测算当水滴不断地滴在一块石头上时,经过10年,石头上可形成一个深为1厘米的小洞,那么平均每个月小洞的深度增加多少米?(结果保留三个有效数字,并用科学记数法表示)三、课后巩固(30分钟训练)1.据考证,单个雪花的质量在0.000 25克左右,这个数用科学记数法表示为( )A.2.5103 B.2.5104 C.2.5105 D.2.51042.下面的计算不正确的是( )A.a10a9=a B.b6b4= C.(bc)4(bc)2=b2c2 D.b5+b5=2b53.要使()0有意义,则x满足条件_.4.(1)()p=_;(2)x2x3x3=_;(3)(a3b2)3=;_(4)(a2b3)2=_.5若x、y互为相反数,则(5x)2(52)y=_.6.计算:()2()0+()2()2.7.计算:(9103)(5102).8.计算:(1)5x2y23x3y2; (2)6xy2z(3x3y3z1).9.已知mm1=3,求m2+m2的值.参考答案一、课前预习 (5分钟训练)1.下列计算正确的是( )A.(2)0=1 B.23=8 C.2(3)=5 D.32=9解析:A:任何一个非零数的零次幂都等于1,故A错;C:2(3)=2+3=1,故C错;D:32=,故D错.答案:B2.答案:(1)a6 (2)a3 (3)a3 (4)am+n3.填空:(1)aa4=_;(2)a0a2=_;(3)a1a3=;(4)aman=_.答案:(1) (2)a2 (3)a2 (4)amn4.某种细菌的长约为0.000 001 8米,用科学记数法表示为_.解析:科学记数法就是将一个数写成a10n(1a10)的形式.用科学记数法可以表示比1大的数,引入负整数指数幂后,也可表示比1小的数.0.000 001 8=1.80.000 001=1.8=1.8106.答案:1.8106二、课中强化(10分钟训练)1.下列计算正确的是( )A.(a2)3=a5 B.(a2)3=a5C.()1+(+3.14)0=2 D.a+a2=a1解析:A.应为a6,B.应为a6,D.不能加减,C.原式=(31)1+1=(3)1+1=2.答案:C2.(1)(a1)2=_(a0);(2)(a2b)2=_(ab0);(3)()1=_(ab0).解析:幂的乘方、积的乘方以及商的乘方,当指数扩大到全体整数范围时,在正整数范围内成立的一切性质在保证分母不为零的前提下都成立.答案:(1) (2) (3)3.填空:(1)52=_;(2)(3a1b)1=_(ab0).解析:(1)根据an=,得52=.(2)根据积的乘方,等于积中每个因式乘方的积可得(3a1b)1=31(a1)1b1=.答案:(1) (2)4.计算:(1)()2()2;(2)(3)533.解析:(1)根据an=.原式=.(2)(3)533=3533=353=38.5.计算:(1)a2b2(ab1);(2)()2(xy)2(x1y).解:(1)a2b2(ab1)=(a2a)(b2b1)=a1b=;(2)()2(xy)2(x1y)=x2y2xy1=.6.我们常用“水滴石穿”来说明一个人只要持之以恒地做某件事,就一定能成功.经测算,当水滴不断地滴在一块石头上时,经过10年,石头上可形成一个深为1厘米的小洞,那么平均每个月小洞的深度增加多少米?(结果保留三个有效数字,并用科学记数法表示)解析:用10年形成的小洞的深度时间即可得到结果,注意单位.解:因为10年=120个月,1厘米=102米,所以平均每个月小洞的深度增加102120=(1120)1020.008 33102=8.33103102=8.33105(米).三、课后巩固(30分钟训练)1.据考证,单个雪花的质量在0.000 25克左右,这个数用科学记数法表示为( )A.2.5103 B.2.5104 C.2.5105 D.2.5104解析:科学记数法就是将一个较大或较小的数写成a10n(1a10)的形式.答案:B2.下面的计算不正确的是( )A.a10a9=a B.b6b4= C.(bc)4(bc)2=b2c2 D.b5+b5=2b5解析:运用幂的运算性质时一要注意符号问题,二要注意它们之间的区别,还要注意别与合并同类项混了.此题中A、B、D都正确,而C:原式=(bc)2=b2c2.答案:C3.3p=4,()q=11,则32pq=_.解析:32p=(3p)2=42=16,3q=()q=11.原式=32p3q=1611=176.答案:1764.要使()0有意义,则x满足条件_.解析:要使式子有意义,分母不为0,分子为0.x20,x24=0.x=2.答案:x=25.(1)()p=_;(2)x2x3x3=_;(3)(a3b2)3=;_(4)(a2b3)2=_.解析:(1)()p=(a1)p=ap.(2)x2x3x3=x5(3)=x2.(3)(a3b2)3=a9b6.(4)(a2b3)2=a4b6.答案:(1)ap (2)x2 (3)a9b6 (4)a4b66.若x、y互为相反数,则(5x)2(52)y=_.解析:由x、y互为相反数得x+y=0,所以(5x)2(52)y=52x52y=52x+2y=52(x+y)=50=1.7.计算:()2()0+()2()2.解析:原式=.8.计算:(9103)(5102).解:原式=(95)(102103)=45105=4.510105=4.5104.9.计算:(1)5x2y23x3y2; (2)6xy2z(3x3y3z1).分式求值(经典题型)一、着眼全局,整体代入例1 已知,求的值.例2已知,求的值.练一练:1.已知,求的值. 2. 已知,求分式的值3. 若,求分式的值二、巧妙变形,构造代入例3 已知,求的值.例4已知不等于0,且,求的值.练一练4. 若,求的值5.已知,试求代数式的值三、参数辅助,多元归一例5 已知,求的值。练一练6. 已知,求分式的值四、打破常规,倒数代入例6 已知,求的值.练一练7. 若,求分式的值.8.已知,求的值.9. 已知,求的值.1、(2011沈阳)小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达求走路线一和路线二时的各自的平均速度。2、(2011綦江县)在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000 个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用 乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,求每个甲型包装箱和乙型包装箱各可装多少个鸡蛋。3、(2011南平)某商店销售一种玩具,每件售价92元,可获利15%,求这种玩具的成本价求这种玩具的成本价为多少元。4、(2011衡阳)某村计划新修水渠3600米,为了让水渠尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成任务,求原计划每天修水渠多少米。5、(2011抚顺)某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务。求甲乙两车间每天各生产多少个。6、(2011长春)小玲每天骑自行车或步行上学,她上学的路程为2800米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比步行上学早到30分钟求小玲步行和骑自动车的平均速度各是多少。7、(2010益阳)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?8、(2010深圳)某单位向一所希望小学赠送1080件文具,现用A,B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个求每个甲型包装箱和乙型包装箱各可装多少件玩具。9、(2010青海)某施工队挖掘一条长90米的隧道,开工后每天比原计划多挖1米,结果提前3天完成任务,原计划每天挖多少米?10、(2009泰安)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套。11、(2008西宁)“512”汶川大地震导致某铁路隧道被严重破坏为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车问原计划每天修多少米。12、(2008铜仁地区)炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台求甲乙两安装队每天各安装多少台空调。13、(2008青海)为响应承办“绿色奥运”的号召,九年级(1)班全体师生义务植树300棵但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务求原计划每小时植树多少棵。14、(2008昆明)某市道路改造中,需要铺设一条长为1200米的管道,为了尽量减少施工对交通造成的影响,实际施工时,工作效率比原计划提高了25%,结果提前了8天完成任务求原计划每天铺设管道多少米。15、(2008防城港)在今年抗震赈灾活动中,小明统计了自己所在的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多15;(3)甲班比乙班多5人。求甲乙两班各捐款多少钱。16、(2008鄂尔多斯)今年初,我国南方出现特大雪灾,我市某汽车运输公司立即承担了运送16万吨煤炭到包头火车站的救灾任务,为加快速度,实际每天运煤比原计划每天多0.4万吨,结果提前2天完成任务,问实际每天运煤多少万吨。17、(2008安顺)某化肥厂计划在规定日期内生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨与原计划生产120吨的时间相等求原计划每天生产多少吨化肥。18、(2007南通)有两块面积相同的试验田,分别收获蔬菜900kg和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg,求第一块试验田每亩收获蔬菜多少千克19、(2006宜宾)“五一”期间,一批初三同学包租一辆面包车前去竹海游览,面包车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车费。问一共有多少同学参加游览。20、(2006南通)某中学图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书、由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多4本求文学书的单价21、(2005毕节地区)某乡镇改造农村电网,需重新架设4000米长的电线为了减少施工对农户用电造成的影响,施工时每天的工作效率比原计划提高,结果提前2天完成任务,问实际施工中每天架设多长电线。22、(2004岳阳)20人一行外出旅游住旅社,因特殊原因,服务员在安排房间时每间比原来多住1人,结果比原来少用了一个房间。求原来每间房住多少人。23、 (2003淮安)某饭馆用320元钱到商场去购买“白猫”洗洁精,经过还价,每瓶便宜0.5元,结果比用原价买多买了20瓶,求原价每瓶多少元。第五讲 有条件的分式的化简与求值 例题求解【例1】若,则的值是 ( “希望杯”邀请赛试题)思路点拨 引入参数,利用参数寻找a、b、c、d的关系 注:解数学题是运用巳知条件去探求未知结论的一个过程如何运用已知条件是解题顺畅的重要前提,对巳知条件的运用有下列途径: (1)直接运用条件; (2) 变形运用条件; (3) 综合运用条件; (4)挖掘隐含条件在解某些含多个字母的代数式问题时,如果已知与未知之间的联系不明显,为了沟通已知与未知之间的联系,则可考虑引入一个参数,参数的引入,可起到沟通变元、消元的功能 【例2】【例1】若,则的值是 A1 B2 C3 D4 (全国初中数学联赛武汉选拔赛)思路点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论