




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
空间几何体的直观图练习题相关知识1多面体的结构特征(1)棱柱的侧棱都互相平行,上下底面是全等的多边形(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形2旋转体的结构特征(1)圆柱可以由矩形绕一边所在直线旋转一周得到(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到3空间几何体的三视图空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图4空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x轴、y轴,两轴相交于点O,且使xOy45或135,已知图形中平行于x轴、y轴的线段,在直观图中平行于x轴、y轴已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半(2)画几何体的高在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z轴,也垂直于xOy平面,已知图形中平行于z轴的线段,在直观图中仍平行于z轴且长度不变一个规律三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法 两个概念(1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形(2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥特别地,各棱均相等的正三棱锥叫正四面体反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心课前检测1(人教A版教材习题改编)下列说法正确的是()A有两个面平行,其余各面都是四边形的几何体叫棱柱B有两个面平行,其余各面都是平行四边形的几何体叫棱柱C有一个面是多边形,其余各面都是三角形的几何体叫棱锥D棱台各侧棱的延长线交于一点答案D2(2012杭州模拟)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A圆柱 B圆锥C球体 D圆柱、圆锥、球体的组合体解析当用过高线的平面截圆柱和圆锥时,截面分别为矩形和三角形,只有球满足任意截面都是圆面答案C3(2011陕西)某几何体的三视图如图所示,则它的体积是()A8 B8C82 D.解析圆锥的底面半径为1,高为2,该几何体体积为正方体体积减去圆锥体积,即V2221228,正确选项为A.答案A4(2011浙江)若某几何体的三视图如图所示,则这个几何体的直观图可以是()解析所给选项中,A、C选项的正视图、俯视图不符合,D选项的侧视图不符合,只有选项B符合答案B5(2011天津)一个几何体的三视图如图所示(单位:m)则该几何体的体积为_m3.解析由三视图可知该几何体是组合体,下面是长方体,长、宽、高分别为3、2、1,上面是一个圆锥,底面圆半径为1,高为3,所以该几何体的体积为32136(m3)答案6教学过程问题与例题问题一 空间几何体的结构特征【例1】(2012天津质检)如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题是()A等腰四棱锥的腰与底面所成的角都相等B等腰四棱锥的侧面与底面所成的二面角都相等或互补C等腰四棱锥的底面四边形必存在外接圆D等腰四棱锥的各顶点必在同一球面上审题视点 可借助几何图形进行判断解析如图,等腰四棱锥的侧棱均相等,其侧棱在底面的射影也相等,则其腰与底面所成角相等,即A正确;底面四边形必有一个外接圆,即C正确;在高线上可以找到一个点O,使得该点到四棱锥各个顶点的距离相等,这个点即为外接球的球心,即D正确;但四棱锥的侧面与底面所成角不一定相等或互补(若为正四棱锥则成立)故仅命题B为假命题选B.答案B【设计意图】 三棱柱、四棱柱、正方体、长方体、三棱锥、四棱锥是常见的空间几何体,也是重要的几何模型,有些问题可用上述几何体举特例解决【变式】 以下命题:以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;圆柱、圆锥、圆台的底面都是圆;一个平面截圆锥,得到一个圆锥和一个圆台其中正确命题的个数为()A0 B1 C2 D3解析命题错,因为这条边若是直角三角形的斜边,则得不到圆锥命题错,因这条腰必须是垂直于两底的腰命题对命题错,必须用平行于圆锥底面的平面截圆锥才行答案B问题二 空间几何体的三视图【例2】(2011全国新课标)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()审题视点 由正视图和俯视图想到三棱锥和圆锥解析由几何体的正视图和俯视图可知,该几何体应为一个半圆锥和一个有一侧面(与半圆锥的轴截面为同一三角形)垂直于底面的三棱锥的组合体,故其侧视图应为D.答案D【设计意图】 (1)空间几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形(2)在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线【变式】 (2011浙江)若某几何体的三视图如图所示,则这个几何体的直观图可以是()解析A中正视图,俯视图不对,故A错B中正视图,侧视图不对,故B错C中侧视图,俯视图不对,故C错,故选D.答案D问题三空间几何体的直观图【例3】已知正三角形ABC的边长为a,那么ABC的平面直观图ABC的面积为()A.a2 B.a2 C.a2 D.a2审题视点 画出正三角形ABC的平面直观图ABC,求ABC的高即可解析如图所示的实际图形和直观图由斜二测画法可知,ABABa,OCOCa,在图中作CDAB于D,则CDOCa.SABCABCDaaa2.答案D【设计意图】直接根据水平放置的平面图形的直观图的斜二测画法规则即可得到平面图形的面积是其直观图面积的2倍,这是一个较常用的重要结论【变式】 如图,矩形OABC是水平放置的一个平面图形的直观图,其中OA6 cm,OC2 cm,则原图形是()A正方形 B矩形C菱形 D一般的平行四边形解析将直观图还原得OABC,则ODOC2 (cm),OD2OD4 (cm),CDOC2 (cm),CD2 (cm),OC6 (cm),OAOA6 (cm)OC,故原图形为菱形答案C问题四 忽视几何体的放置对三视图的影响致错【问题诊断】 空间几何体的三视图是该几何体在两两垂直的三个平面上的正投影.同一几何体摆放的角度不同,其三视图可能不同,有的考生往往忽视这一点.【防范措施】 应从多角度细心观察.【例】一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的_(填入所有可能的几何体前的编号)三棱锥;四棱锥;三棱柱;四棱柱;圆锥;圆柱错因忽视几何体的不同放置对三视图的影响,漏选.实录正解三棱锥的正视图是三角形;当四棱锥的底面是四边形放置时,其正视图是三角形;把三棱柱某一侧面当作底面放置,其底面正对着我们的视线时,它的正视图是三角形;对于四棱柱,不论怎样放置,其正视图都不可能是三角形;当圆锥的底面水平放置时,其正视图是三角形;圆柱不论怎样放置,其正视图也不可能是三角形答案【变式】 (2011山东)右图是长和宽分别相等的两个矩形给定下列三个命题:存在三棱柱,其正(主)视图、俯视图如右图;存在四棱柱,其正(主)视图、俯视图如右图;存在圆柱,其正(主)视图,俯视图如右图其中真命题的个数是()A3 B2C1 D0尝试解答如图的正(主)视图和俯视图都与原题相同,故选A.答案A五、目标检测1 下列结论不正确的是 (填序号).各个面都是三角形的几何体是三棱锥以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥圆锥的顶点与底面圆周上的任意一点的连线都是母线答案 解析 错误.如图所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不一定是棱锥.错误.如下图,若ABC不是直角三角形或是直角三角形,但旋转轴不是直角边,所 得的几何体都不是圆锥.错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长. 正确.2.如果一个几何体的三视图如图所示(单位长度:cm),则此几何体的表面积是 cm2. 答案 (20+4) 3 一个正三棱柱的三视图如图所示,求这个三棱柱的表面积和体积.解 由三视图易知,该正三棱柱的形状如图所示:且AA=BB=CC=4cm,正三角形ABC和正三角形ABC的高为2cm.正三角形ABC的边长为|AB|=4.该三棱柱的表面积为S=344+242sin60=48+8(cm2).体积为V=S底|AA|=42sin604=16(cm3).故这个三棱柱的表面积为(48+8)cm2,体积为16cm3.4 棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图所示, 求图中三角形(正四面体的截面)的面积.解 如图所示,ABE为题中的三角形,由已知得AB=2,BE=2=,BF=BE=,AF=,ABE的面积为S=BEAF=.所求的三角形的面积为.六、课堂小结本节课你学了哪些内容?掌握了哪些题型?七、配餐练习A组题1.利用斜二测画法可以得到:三角形的直观图是三角形,平行四边形的直观图是平行四边形,正方形的直观图是正方形,菱形的直观图是菱形,以上正确结论的序号是 .答案 2.如图所示,甲、乙、丙是三个几何体图形的三视图,甲、乙、丙对应的标号是 .长方体;圆锥;三棱锥;圆柱.答案 3.下列几何体各自的三视图中,有且仅有两个视图相同的是 .答案 4.用若干个大小相同,棱长为1的正方体摆成一个立体模型,其三视图如下:根据三视图回答此立体模型的体积为 .答案 55.棱长为1的正方体ABCDA1B1C1D1的8个顶点都在球O的表面上,E、F分别是棱AA1、DD1的中点,则直线EF被球O截得的线段长为 .答案 B组题6.用小立方块搭一个几何体,使得它的正视图和俯视图如图所示,这样的几何体至少要 个小立方块.最多只能用 个小立方块.答案 9 147.如图所示,E、F分别是正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的正投影可能是 .(把可能的图的序号都填上) 答案 8.正四棱台AC1的高是17 cm,两底面的边长分别是4 cm和16 cm,求这个棱台的侧棱长和斜高.解 如图所示,设棱台的两底面的中心分别是O1、O,B1C1和BC的中点分别是E1和E,连接O1O、E1E、O1B1、OB、O1E1、OE,则四边形OBB1O1和OEE1O1都是直角梯形.A1B1=4 cm,AB=16 cm, O1E1=2 cm,OE=8 cm,O1B1=2 cm,OB=8 cm,B1B2=O1O2+(OB-O1B1)2=361 cm2,E1E2=O1O2+(OE-O1E1)2=325 cm2,B1B=19 cm,E1E=5cm.答 这个棱台的侧棱长为19 cm,斜高为5cm.9.圆台的一个底面周长是另一个底面周长的3倍,轴截面的面积等于392 cm2,母线与轴的夹角是45,求这个圆台的高、母线长和两底面半径.解 圆台的轴截面如图所示,设圆台上下底面半径分别为x cm,3x cm.延长AA1交OO1的延长线于S,在RtSOA中,ASO=45, 则SAO=45,SO=AO=3x,O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论