




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
题型练8大题专项(六)函数与导数综合问题1.(2017全国,文21)已知函数f(x)=ex(ex-a)-a2x.(1)讨论f(x)的单调性;(2)若f(x)0,求a的取值范围.2.设f(x)=xln x-ax2+(2a-1)x,aR.(1)令g(x)=f(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值.求实数a的取值范围.3.已知函数f(x)=x3+ax2+b(a,bR).(1)试讨论f(x)的单调性;(2)若b=c-a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(-,-3),求c的值.4.已知函数f(x)=-2xln x+x2-2ax+a2,其中a0.(1)设g(x)是f(x)的导函数,讨论g(x)的单调性;(2)证明:存在a(0,1),使得f(x)0恒成立,且f(x)=0在区间(1,+)内有唯一解.5.已知函数f(x)=x2-ax,g(x)=ln x,h(x)=f(x)+g(x)(aR).(1)若不等式f(x)g(x)恒成立,求实数a的取值范围.(2)若函数h(x)有两个极值点x1,x2.求实数a的取值范围;当x1时,求证:h(x1)-h(x2)-ln 2.6.设函数f(x)=,g(x)=-x+(a+b)(其中e为自然对数的底数,a,bR,且a0),曲线y=f(x)在点(1,f(1)处的切线方程为y=ae(x-1).(1)求b的值;(2)若对任意x,f(x)与g(x)有且只有两个交点,求a的取值范围.#题型练8大题专项(六)函数与导数综合问题1.解 (1)函数f(x)的定义域为(-,+),f(x)=2e2x-aex-a2=(2ex+a)(ex-a).若a=0,则f(x)=e2x,在区间(-,+)单调递增.若a0,则由f(x)=0得x=ln a.当x(-,ln a)时,f(x)0.故f(x)在区间(-,ln a)单调递减,在区间(ln a,+)单调递增.若a0,则由f(x)=0得x=ln.当x时,f(x)0.故f(x)在区间单调递减,在区间单调递增.(2)若a=0,则f(x)=e2x,所以f(x)0.若a0,则由(1)得,当x=ln a时,f(x)取得最小值,最小值为f(ln a)=-a2ln a.从而当且仅当-a2ln a0,即a1时,f(x)0.若a0,函数g(x)单调递增;当a0时,x时,g(x)0,函数g(x)单调递增,x时,函数g(x)单调递减.所以当a0时,g(x)的单调增区间为(0,+);当a0时,g(x)单调增区间为,单调减区间为.(2)由(1)知,f(1)=0.当a0时,f(x)单调递增,所以当x(0,1)时,f(x)0,f(x)单调递增.所以f(x)在x=1处取得极小值,不合题意.当0a1,由(1)知f(x)在区间内单调递增,可得当x(0,1)时,f(x)0.所以f(x)在区间(0,1)内单调递减,在区间内单调递增,所以f(x)在x=1处取得极小值,不合题意.当a=时,=1,f(x)在区间(0,1)内单调递增,在区间(1,+)内单调递减,所以当x(0,+)时,f(x)0,f(x)单调递减,不合题意.当a时,00,f(x)单调递增,当x(1,+)时,f(x).3.解 (1)f(x)=3x2+2ax,令f(x)=0,解得x1=0,x2=-.当a=0时,因为f(x)=3x20(x0),所以函数f(x)在区间(-,+)内单调递增;当a0时,x(0,+)时,f(x)0,x时,f(x)0,所以函数f(x)在区间,(0,+)内单调递增,在区间上单调递减;当a0,x时,f(x)0,所以函数f(x)在区间(-,0),内单调递增,在区间内单调递减.(2)由(1)知,函数f(x)的两个极值为f(0)=b,fa3+b,则函数f(x)有三个零点等价于f(0)f=b0时,a3-a+c0或当a0时,a3-a+c0.设g(a)=a3-a+c,因为函数f(x)有三个零点时,a的取值范围恰好是(-,-3),则在(-,-3)内g(a)0均恒成立,从而g(-3)=c-10,且g=c-10,因此c=1.此时,f(x)=x3+ax2+1-a=(x+1)x2+(a-1)x+1-a,因函数有三个零点,则x2+(a-1)x+1-a=0有两个异于-1的不等实根,所以=(a-1)2-4(1-a)=a2+2a-30,且(-1)2-(a-1)+1-a0,解得a(-,-3).综上c=1.4.(1)解 由已知,函数f(x)的定义域为(0,+),g(x)=f(x)=2(x-1-ln x-a),所以g(x)=2-.当x(0,1)时,g(x)0,g(x)单调递增.(2)证明 由f(x)=2(x-1-ln x-a)=0,解得a=x-1-ln x.令(x)=-2xln x+x2-2x(x-1-ln x)+(x-1-ln x)2=(1+ln x)2-2xln x,则(1)=10,(e)=2(2-e)0.于是,存在x0(1,e),使得(x0)=0.令a0=x0-1-ln x0=u(x0),其中u(x)=x-1-ln x(x1).由u(x)=1-0知,函数u(x)在区间(1,+)内单调递增.故0=u(1)a0=u(x0)u(e)=e-21.即a0(0,1).当a=a0时,有f(x0)=0,f(x0)=(x0)=0.再由(1)知,f(x)在区间(1,+)内单调递增,当x(1,x0)时,f(x)f(x0)=0;当x(x0,+)时,f(x)0,从而f(x)f(x0)=0;又当x(0,1时,f(x)=(x-a0)2-2xln x0.故x(0,+)时,f(x)0.综上所述,存在a(0,1),使得f(x)0恒成立,且f(x)=0在区间(1,+)内有唯一解.5.解 (1)由f(x)g(x),得ax-(x0),令(x)=x-(x0),得(x)=.当0x1时,x2-10,ln x0,从而(x)1时,x2-10,ln x0,从而(x)0,(x)在区间(1,+)内是增函数,(x)min=(1)=1,a1,即实数a的取值范围是(-,1.(2)(方法一)h(x)=x2-ax+ln x(x0),h(x)=2x+-a,h(x)2-a,当a2时,h(x)0,函数h(x)在区间(0,+)内单调递增,函数h(x)无极值点,当a2时,h(x)=,当x时,h(x)0;当x时,h(x)0.故函数h(x)在区间内单调递增,在区间内单调递减,在区间内单调递增.函数h(x)有两个极值点x1=,x2=,综上所述,实数a的取值范围是(2,+).(方法二)h(x)=x2-ax+ln x(x0),h(x)=2x+-a=问题等价于方程2x2-ax+1=0有两相异正根x1,x2,解得a2,故实数a的取值范围是(2,+).证明:由知,x1,x2即方程2x2-ax+1=0的两个根,x1x2=,h(x1)-h(x2)=-a(x1-x2)+ln x1-ln x2.又2+1=ax1,2+1=ax2,h(x1)-h(x2)=+2ln x1+ln 2.令k(x)=-x2+2ln x+ln 2,x,得k(x)=-k-ln 2.h(x1)-h(x2)-ln 2.6.解 (1)由f(x)=,得f(x)=,由题意得f(1)=ab=ae.a0,b=e.(2)令h(x)=x(f(x)-g(x)=x2-(a+e)x+aeln x,则任意x,f(x)与g(x)有且只有两个交点,等价于函数h(x)在区间有且只有两个零点.由h(x)=x2-(a+e)x+aeln x,得h(x)=,当a时,由h(x)0得xe;由h(x)0得xe.此时h(x)在区间内单调递减,在区间(e,+)内单调递增.h(e)=e2-(a+e)e+aeln e=-e20(或当x+时,h(x)0亦可),要使得h(x)在区间内有且只有两个零点,则只需h+aeln0,即a.当a0得xe;由h(x)0得axe.此时h(x)在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 顺普培训考试题库及答案
- 2025年新疆农作物制种合作合同协议
- 2025年物业管理人员考核合同
- 机电维修班考试题及答案
- 招募管理师考试题及答案
- 工会职工技能考试题库及答案
- 青协组织笔试题目及答案
- 中国近代史事件历史基础知识试题及答案
- 城乡发展差异地理基础知识试题及答案
- pvc采购合同(标准版)
- 进制转换课件-2025-2026学年浙教版高中信息技术必修一
- 店员绩效考核制度
- 电厂电气安全知识培训课件
- 国际汉语考试题及答案
- 遥控车辆模型课件
- 企业销售业务标准作业手册
- 羽毛球合作协议合同范本
- 2025年全国计算机技术与软件专业技术资格(水平)考试系统集成项目管理工程师押题试卷
- 中国南方航空数字化和双中台方案
- 2025至2030乙烯丙烯酸(EAA)行业发展趋势分析与未来投资战略咨询研究报告
- 2025年通信技术认证考试-应急通信认证历年参考题库含答案解析(5套典型题)
评论
0/150
提交评论