天津市2018年高考数学二轮复习专题能力训练16椭圆双曲线抛物线文.doc_第1页
天津市2018年高考数学二轮复习专题能力训练16椭圆双曲线抛物线文.doc_第2页
天津市2018年高考数学二轮复习专题能力训练16椭圆双曲线抛物线文.doc_第3页
天津市2018年高考数学二轮复习专题能力训练16椭圆双曲线抛物线文.doc_第4页
天津市2018年高考数学二轮复习专题能力训练16椭圆双曲线抛物线文.doc_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题能力训练16椭圆、双曲线、抛物线一、能力突破训练1.已知双曲线x2a2-y2b2=1(a0,b0)的焦距为25,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为() A.x24-y2=1B.x2-y24=1C.3x220-3y25=1D.3x25-3y220=1答案:A解析:双曲线x2a2-y2b2=1(a0,b0)的焦距为25,c=5.又该双曲线的渐近线与直线2x+y=0垂直,渐近线方程为y=12x.ba=12,即a=2b.a2=4b2.c2-b2=4b2.c2=5b2.5=5b2.b2=1.a2=c2-b2=5-1=4.故所求双曲线的方程为x24-y2=1.2.(2017全国,文5)已知F是双曲线C:x2-y23=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则APF的面积为()A.13B.12C.23D.32答案:D解析:由c2=a2+b2=4,得c=2,所以点F的坐标为(2,0).将x=2代入x2-y23=1,得y=3,所以PF=3.又点A的坐标是(1,3),故APF的面积为123(2-1)=32,故选D.3.已知O为坐标原点,F是椭圆C:x2a2+y2b2=1(ab0)的左焦点,A,B分别为C的左、右顶点,P为C上一点,且PFx轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()A.13B.12C.23D.34答案:A解析:由题意知,A(-a,0),B(a,0),根据对称性,不妨令P-c,b2a,设l:x=my-a,M-c,a-cm,E0,am.直线BM:y=-a-cm(a+c)(x-a).又直线BM经过OE的中点,(a-c)a(a+c)m=a2m,解得a=3c.e=ca=13,故选A.4.(2017天津,文5)已知双曲线x2a2-y2b2=1(a0,b0)的右焦点为F,点A在双曲线的渐近线上,OAF是边长为2的等边三角形(O为原点),则双曲线的方程为()A.x24-y212=1B.x212-y24=1C.x23-y2=1D.x2-y23=1答案:D解析:双曲线x2a2-y2b2=1(a0,b0)的右焦点为F(c,0),点A在双曲线的渐近线上,且OAF是边长为2的等边三角形,不妨设点A在渐近线y=bax上,c=2,ba=tan60,a2+b2=c2,解得a=1,b=3.所以双曲线的方程为x2-y23=1.故选D.5.已知点P为双曲线x216-y29=1右支上一点,点F1,F2分别为双曲线的左、右焦点,M为PF1F2的内心.若SPMF1=SPMF2+8,则MF1F2的面积为()A.27B.10C.8D.6答案:B解析:设内切圆的半径为R,a=4,b=3,c=5.SPMF1=SPMF2+8,12(|PF1|-|PF2|)R=8,即aR=8,R=2.故SMF1F2=122cR=10.6.设双曲线x2a2-y2b2=1(a0,b0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A,B两点,与双曲线的一个交点为P,设O为坐标原点.若OP=mOA+nOB(m,nR),且mn=29,则该双曲线的离心率为()A.322B.355C.324D.98答案:C解析:在y=bax中令x=c,得Ac,bca,Bc,-bca,在双曲线x2a2-y2b2=1中令x=c得Pc,b2a.当点P的坐标为c,b2a时,由OP=mOA+nOB,得c=(m+n)c,b2a=mbca-nbca,则m+n=1,m-n=bc.由m+n=1,mn=29,得m=23,n=13或m=13,n=23(舍去),bc=13,c2-a2c2=19,e=324.同理,当点P的坐标为c,-b2a时,e=324.故该双曲线的离心率为324.7.已知双曲线E:x2a2-y2b2=1(a0,b0).矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是.答案:2解析:由题意不妨设AB=3,则BC=2.设AB,CD的中点分别为M,N,如图,则在RtBMN中,MN=2,故BN=BM2+MN2=322+22=52.由双曲线的定义可得2a=BN-BM=52-32=1,而2c=MN=2,所以双曲线的离心率e=2c2a=2.8.已知直线l1:x-y+5=0和l2:x+4=0,抛物线C:y2=16x,P是C上一动点,则点P到l1与l2距离之和的最小值为.答案:922解析:在同一坐标系中画出直线l1,l2和曲线C如图.P是C上任意一点,由抛物线的定义知,|PF|=d2,d1+d2=d1+|PF|,显然当PFl1,即d1+d2=|FM|时,距离之和取到最小值.|FM|=922,所求最小值为922.9.如图,已知抛物线C1:y=14x2,圆C2:x2+(y-1)2=1,过点P(t,0)(t0)作不过原点O的直线PA,PB分别与抛物线C1和圆C2相切,A,B为切点.(1)求点A,B的坐标;(2)求PAB的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.解(1)由题意知直线PA的斜率存在,故可设直线PA的方程为y=k(x-t),由y=k(x-t),y=14x2消去y,整理得:x2-4kx+4kt=0,由于直线PA与抛物线相切,得k=t.因此,点A的坐标为(2t,t2).设圆C2的圆心为D(0,1),点B的坐标为(x0,y0),由题意知:点B,O关于直线PD对称,故y02=-x02t+1,x0t-y0=0,解得x0=2t1+t2,y0=2t21+t2.因此,点B的坐标为2t1+t2,2t21+t2.(2)由(1)知|AP|=t1+t2和直线PA的方程tx-y-t2=0.点B到直线PA的距离是d=t21+t2.设PAB的面积为S(t),所以S(t)=12|AP|d=t32.10.如图,动点M与两定点A(-1,0),B(1,0)构成MAB,且直线MA,MB的斜率之积为4,设动点M的轨迹为C.(1)求轨迹C的方程;(2)设直线y=x+m(m0)与y轴相交于点P,与轨迹C相交于点Q,R,且|PQ|0,而当1或-1为方程的根时,m的值为-1或1.结合题设(m0)可知,m0,且m1.设Q,R的坐标分别为(xQ,yQ),(xR,yR),则xQ,xR为方程的两根,因为|PQ|PR|,所以|xQ|1,且1+3m22,所以11+221+3m2-13,且1+221+3m2-153,所以1|PR|PQ|=xRxQ3)的右焦点为F,右顶点为A.已知1|OF|+1|OA|=3e|FA|,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BFHF,且MOA=MAO,求直线l的斜率.解(1)设F(c,0).由1|OF|+1|OA|=3e|FA|,即1c+1a=3ca(a-c),可得a2-c2=3c2,又a2-c2=b2=3,所以c2=1,因此a2=4.所以,椭圆的方程为x24+y23=1.(2)设直线l的斜率为k(k0),则直线l的方程为y=k(x-2).设B(xB,yB),由方程组x24+y23=1,y=k(x-2)消去y,整理得(4k2+3)x2-16k2x+16k2-12=0.解得x=2,或x=8k2-64k2+3,由题意得xB=8k2-64k2+3,从而yB=-12k4k2+3.由(1)知,F(1,0),设H(0,yH),有FH=(-1,yH),BF=9-4k24k2+3,12k4k2+3.由BFHF,得BFFH=0,所以4k2-94k2+3+12kyH4k2+3=0,解得yH=9-4k212k.因此直线MH的方程为y=-1kx+9-4k212k.设M(xM,yM),由方程组y=k(x-2),y=-1kx+9-4k212k消去y,解得xM=20k2+912(k2+1).在MAO中,MOA=MAO|MA|=|MO|,即(xM-2)2+yM2=xM2+yM2,化简得xM=1,即20k2+912(k2+1)=1,解得k=-64,或k=64.所以,直线l的斜率为-64或64.二、思维提升训练12.已知椭圆E:x2a2+y2b2=1(ab0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B两点.若|AF|+|BF|=4,点M到直线l的距离不小于45,则椭圆E的离心率的取值范围是()A.0,32B.0,34C.32,1D.34,1答案:A解析:如图,取椭圆的左焦点F1,连接AF1,BF1.由椭圆的对称性知四边形AF1BF是平行四边形,|AF|+|BF|=|AF1|+|AF|=2a=4.a=2.不妨设M(0,b),则|30-4b|32+4245,b1.e=ca=1-ba21-122=32.又0e1,00)的焦点为F,点M在C上,|MF|=5.若以MF为直径的圆过点(0,2),则C的方程为()A.y2=4x或y2=8xB.y2=2x或y2=8xC.y2=4x或y2=16xD.y2=2x或y2=16x答案:C解析:设点M的坐标为(x0,y0),由抛物线的定义,得|MF|=x0+p2=5,则x0=5-p2.因为点F的坐标为p2,0,所以以MF为直径的圆的方程为(x-x0)x-p2+(y-y0)y=0.将x=0,y=2代入得px0+8-4y0=0,即y022-4y0+8=0,解得y0=4.由y02=2px0,得16=2p5-p2,解得p=2或p=8.所以C的方程为y2=4x或y2=16x.故选C.14.(2017江苏,8)在平面直角坐标系xOy中,双曲线x23-y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.答案:23解析:该双曲线的右准线方程为x=310=31010,两条渐近线方程为y=33x,得P31010,3010,Q31010,-3010,又c=10,所以F1(-10,0),F2(10,0),四边形F1PF2Q的面积S=2103010=23.15.(2017山东,文15)在平面直角坐标系xOy中,双曲线x2a2-y2b2=1(a0,b0)的右支与焦点为F的抛物线x2=2py(p0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.答案:y=22x解析:抛物线x2=2py的焦点F0,p2,准线方程为y=-p2.设A(x1,y1),B(x2,y2),则|AF|+|BF|=y1+p2+y2+p2=y1+y2+p=4|OF|=4p2=2p.所以y1+y2=p.联立双曲线与抛物线方程得x2a2-y2b2=1,x2=2py,消去x,得a2y2-2pb2y+a2b2=0.所以y1+y2=2pb2a2=p,所以b2a2=12.所以该双曲线的渐近线方程为y=22x.16.已知圆C:(x+1)2+y2=20,点B(1,0),点A是圆C上的动点,线段AB的垂直平分线与线段AC交于点P.(1)求动点P的轨迹C1的方程;(2)设M0,15,N为抛物线C2:y=x2上的一动点,过点N作抛物线C2的切线交曲线C1于P,Q两点,求MPQ面积的最大值.解(1)由已知可得,点P满足|PB|+|PC|=|AC|=252=|BC|,所以动点P的轨迹C1是一个椭圆,其中2a=25,2c=2.动点P的轨迹C1的方程为x25+y24=1.(2)设N(t,t2),则PQ的方程为y-t2=2t(x-t)y=2tx-t2.联立方程组y=2tx-t2,x25+y24=1,消去y整理,得(4+20t2)x2-20t3x+5t4-20=0,有=80(4+20t2-t4)0,x1+x2=20t34+20t2,x1x2=5t4-204+20t2.而|PQ|=1+4t2|x1-x2|=1+4t280(4+20t2-t4)4+20t2,点M到PQ的高为h=15+t21+4t2,由SMPQ=12|PQ|h代入化简,得SMPQ=510-(t2-10)2+104510104=1305,当且仅当t2=10时,SMPQ可取最大值1305.17.已知动点C是椭圆:x2a+y2=1(a1)上的任意一点,AB是圆G:x2+(y-2)2=94的一条直径(A,B是端点),CACB的最大值是314.(1)求椭圆的方程.(2)已知椭圆的左、右焦点分别为点F1,F2,过点F2且与x轴不垂直的直线l交椭圆于P,Q两点.在线段OF2上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求实数m的取值范围;若不存在,请说明理由.解(1)设点C的坐标为(x,y),则x2a+y2=1.连接CG,由CA=CG+GA,CB=CG+GB=CG-GA,又G(0,2),CG=(-x,2-y),可得CACB=CG2-GA2=x2+(y-2)2-94=a(1-y2)+(y-2)2-94=-(a-1)y2-4y+a+74,其中y-1,1.因为a1,所以当y=42(1-a)-1,即1-1,即a3时,CACB的最大值是4(1-a)a+74-164(1-a),由条件得4(1-a)a+74-164(1-a)=314,即a2-7a+10=0,解得a=5或a=2(舍去).综上所述,椭圆的方程是x25+y2=1.(2)设点P(x1,y1),Q(x2,y2),PQ的中点坐标为(x0,y0),则满足x125+y12=1,x225+y22=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论