




已阅读5页,还剩36页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2009VMwareInc Allrightsreserved Serengeti 虚拟化你的大数据应用 蔺永华Vmware Inc Agenda Today sbigdatasystem Whyvirtualizehadoop Serengetiintroduction Commonquestionsaboutvirtualization Serengetisolution DeepinsightintoSerengeti Summary Q A Today sBigDataSystem ETL UnstructuredData HDFS RealTimeStructuredDatabase BigSQL Data ParallelBatchProcessing RealTimeStreamsReal TimeProcessing s4 storm Analytics Agenda Today sbigdatasystem Whyvirtualizehadoop Serengetiintroduction Commonquestionsaboutvirtualization Serengetisolution DeepinsightintoSerengeti Summary Q A ChallengesToUseHadoopinphysicalinfrastructure Deployment Difficulttodeploy costseveralpeopleforseveraldaysevenmonths Difficulttotuneclusterperformance LowEfficiency Hadoopclustersaretypicallynot100 utilizedacrossallhardwareresources Difficulttoshareresourcessafelybetweendifferentworkload SinglePointofFailure SinglepointoffailureforNameNodeandJobtracker NoHAforHive HCatalog etc WhyVirtualizeHadoop GetyourHadoopclusterinminutes 1 1000humanefforts LeastHadoopoperationknowledgeFullyautomatedprocess 10minutestogetaHadoop HBaseclusterfromscratch ServerpreparationOSinstallationAutomatebySerengetionvSpherewithbestpracticeNetworkConfigurationHadoopInstallationandConfigurationManualprocess costdays WhyVirtualizeHadoop Consolidatesprawlingclusters Clustersshareserverswithstrongisolation SingleHardwareInfrastructure Unifiedoperations Optimize SharedResources higherutilization Elasticresources fasteron demandaccess HadoopDev HadoopProd HBase ClusterSprawlingSinglepurposeclustersforvariousbusinessapplicationsleadtoclustersprawl ClusterConsolidation Simplify Finance Hadoop VirtualizationPlatform HadoopDev HadoopProd HBase PortalHadoop PortalHadoop 30 CAPEXDown 50 resourcesaresittingidlewhilehighpriorityjobisburningupitscluster Utilizeallresourcesfrompoolondemand Dynamicelasticscalingonsharedresourcepool WhyVirtualizeHadoop Utilizeallyourresourcestosolvethepriorityproblem3Xfastertogetanalyticresults vSphereHighAvailability HA protectionagainstunplanneddowntime Overview ProtectionagainsthostandVMfailures Automaticfailuredetection host guestOS Automaticvirtualmachinerestartinminutes onanyavailablehostincluster OSandapplication independent doesnotrequirecomplexconfigurationchanges Coordination Zookeepr ManagementServer HighAvailabilityfortheHadoopStack HadoopDistributedFileSystem HBase Key Valuestore HDFS MapReduce JobScheduling ExecutionSystem Pig Data Flow Hive BIReporting ETLTools RDBMS JobtrackerNamenode SQL HiveMetaDB HCatalogHcatalogMDB Server XX HAHA AppOS AppAppOSOS AppOS AppOS AppOS AppOS VMwareESXX VMwareESX Zerodowntime zerodatalossfailoverforallvirtualmachinesincaseofhardwarefailures IntegratedwithVMwareHA DRS Nocomplexclusteringorspecializedhardwarerequired Singlecommonmechanismforallapplicationsandoperating FT vSphereFaultToleranceprovidescontinuousprotectionOverview SingleidenticalVMsrunninginlocksteponseparatehosts systemsZerodowntimeforNameNode JobTrackerandothercomponentsinHadoopclusters Agenda Today sbigdatasystem Whyvirtualizehadoop Serengetiintroduction Commonquestionsaboutvirtualization Serengetisolution DeepinsightintoSerengeti Summary Q A EasyandrapiddeploymentandmanagementOpensourceprojectlaunchedinJune2012 0 8isreleasedatApr andwillrelease0 9atJun ToolkitthatleveragevirtualizationtosimplifyHadoopdeploymentandoperationsDeployaclusterin10MinutesfullyautomatedCustomizeHadoopandHBaseclusterAutomatedclusteroperation Comewitheco systemcomponentsSupportallpopularHadoopDistributions Serengeti Demo 10minutestoaHadoopclusterwithSerengeti Agenda Today sbigdatasystem Whyvirtualizehadoop Serengetiintroduction Commonquestionsaboutvirtualization Serengetisolution DeepinsightintoSerengeti Summary Q A CommonquestionsaboutvirtualizationLocalDisk Canlocaldiskbeusedinvirtualizationenvironment FlexibilityandScalabilityHowtoflexiblescheduleresourcesbetweenclustersanddifferentapplicationsasmentionedabove DatastabilityInvirtualenvironment howcanwedistributedataacrosshostandrack DatalocalityHadoopwillschedulecomputetasksnearbythedata toreducenetworkIOfordataR W Canvirtualenvironmentgetthesameresult PerformanceHowabouttheperformanceinvirtualenvironment Agenda Today sbigdatasystem Whyvirtualizehadoop Serengetiintroduction Commonquestionsaboutvirtualization Serengetisolution DeepinsightintoSerengeti Summary Q A CanIuselocaldiskeasily OtherVM OtherVM OtherVM OtherVM OtherVM OtherVM OtherVM OtherVM Hadoop Hadoop Hadoop Hadoop Hadoop Hadoop Hadoop Hadoop Hadoop Hadoop SerengetiExtendVirtualStorageArchitecturetoIncludeLocalDisk SharedStorage SANorNAS Easytoprovision Automatedclusterrebalancing HybridStorage SANforbootimages otherworkloads LocaldiskforHadoop HDFS Host Host Host Host Host Host Howtoflexiblescalein scaleout Howtoflexiblescheduleresourcesbetweenclustersanddifferentapplications Compute CurrentHadoop T1 T2 VM VM VM VM CombinedStorage ComputeHadoopinVM VMlifecycledeterminedbyDatanode Limitedelasticity VMStorageSeparateStorage VMStorageSeparateComputeClusters Separatecompute fromdata Removeelasticconstrain byDatanode Elasticcompute Raiseutilization Separatevirtualcompute Computeclusterpertenant StrongerVM gradesecurityandresourceisolation EvolutionofHadooponVMs Data ComputeseparationSlaveNode SerengetiNodeScaleOut ScaleIn NameNodeHost DHost JobTracker CC CC DHost CC CC DHost CC CC DHost CC CC SerengetiBallooningEnhancementforJavaApplication JVM GuestOS Host JVM GuestOS Host GuestOSJVM Howtokeepdatastability HowtoaccessdatalocallyifdatanodeandcomputenodearelocatedindifferentVM Datanodeandtasktrackercombinedcluster DataComputeseparatedcluster masterHost workerHost workerHost masterHost DatanodeHost Tasktracker DatanodeHost Tasktracker TasktrackerTasktrackerDatanodeHost Computeonlycluster1Computeonlycluster2HDFSclusterComputeOnlycluster Rack1 Rack2 Rack1 DistributedandData ComputeAssociatedVMPlacementRack2 Rack1JobtrackerJobtrackerNamenodeHost Rack2TasktrackerTasktrackerDatanodeHost HadoopTopologyChanges forVirtualization HadoopTopologyAwareness SerengetiHVE D1 D2 R1 R2 N1 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 R3 R4 3 D1 D2 R1 R2 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 R3 R4 2 3 N2 N3 N4 N5 N6 N7 N8 11 23 2 11 2 3 4 HADOOP 8468 UmbrellaJIRA HADOOP 8469HDFS 3495HDFS 3498 Hadoop NetworkTopologyExtension HadoopVirtualizationExtensionsforTopologyHVETaskSchedulingPolicyExtensionBalancerPolicyExtensionReplicaChoosingPolicyExtensionReplicaPlacementPolicyExtensionReplicaRemovalPolicyExtension HDFS MapReduce HadoopCommon MAPREDUCE 4310MAPREDUCE 4309HADOOP 8470HADOOP 8472 Istheresignificantperformancedegradationinvirtualizationenvironment Isthereanyperformancedata VirtualizedHadoopPerformance NativeversusVirtualPlatforms 32hosts 16disks host Source Agenda Today sbigdatasystem Whyvirtualizehadoop Serengetiintroduction Commonquestionsaboutvirtualization Serengetisolution DeepinsightintoSerengeti Summary Q A UIClientFlexUI SerengetiarchitecturediagramCLIClientSpringShellSerengetiWebService Hibernate DAO vPostgres VCadapter IronfanserviceThriftServiceProgressIronfanreportChefserver RestAPI Cookbook VHMstep RabbitMQ VMruntimeManager Host Host Host Host Host VirtualizationPlatform HadoopNode ChefClientHAkit HadoopNode HadoopNode Package repository vCenter CustomizingyourHadoop HBaseclusterwithSerengeti Choiceofdistros Storageconfiguration ChoiceofsharedstorageorLocaldisk Resourceconfiguration Highavailabilityoption ofnodes distro apache groups name master roles hadoop namenode hadoop jobtracker storage type SHARED sizeGB 20 instance type MEDIUM instance num 1 ha true name worker roles hadoop datanode hadoop tasktracker instance type SMALL instance num 5 ha false OnecommandtoscaleoutyourclusterwithSerengeti clusterresize name nodegroupworker instanceNum Configure reconfigureHadoopwitheasebySerengeti ModifyHadoopclusterconfigurationfromSerengeti Usethe configuration sectionofthejsonspecfile SpecifyHadoopattributesincore site xml hdfs site xml mapred site xml hadoop env sh log4j properties ApplynewHadoopconfigurationusingtheeditedspecfile configuration hadoop core site xml checkforallsettingsathttp hadoop apache org common docs r1 0 0 core default html hdfs site xml checkforallsettingsathttp hadoop apache org common docs r1 0 0 hdfs default html mapred site xml checkforallsettingsathttp hadoop apache org common docs r1 0 0 mapred default html io sort mb 300 hadoop env sh HADOOP HEAPSIZE HADOOP NAMENODE OPTS HADOOP DATANODE OPTS clusterconfig namemyHadoop specFile home serengeti myHadoop json FreedomofChoiceandOpenSource CommunityProjects Distributions Flexibilitytochoosefrommajordistributionsclustercreate namemyHadoop distroapache Supportformultipleprojects Openarchitecturetowelcomeindustryparticipation ContributingHadoopVirtualizationExtensions HVE toopensourcecommunity HDFS2withNamenodeFederationandHADeployCDH4Hadoopcluster NameNodeFederation NameNodeHA MapReducev1 HBase Pig Hive andHiveServer CDH4configurations ScaleoutElasticity JobTrackerHA FT ActiveNamenode StandbyNamenode ActiveNamenode StandbyNamenode ZookeeperGroup ZK ZK ZK CoordinateNamenodeGroup1 CoordinateNamenodeGroup2 Quorum basedmetadatastore DataNodesDat
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 漫画版新质生产力
- 民族歌剧《沂蒙山》课件
- 科学企业家:新质生产力的引领者
- 2025年眼科常见眼病诊断与治疗知识考核答案及解析
- 2025年护理学实际操作技能考核模拟试卷答案及解析
- 2025年整形外科手术器械识别模拟考试卷答案及解析
- 2025年生理学生理生化参数测定试卷答案及解析
- 华池县创建省级园林城市实施方案
- 2025年中医儿科疾病辨治与药膳养生模拟考试卷答案及解析
- 2025年中医推拿治疗技术应用考查答案及解析
- 2024年江苏省阜宁县文化馆公开招聘试题带答案详解
- 含特殊药品复方制剂管理培训
- 《全媒体营销》课件-1.2互联网发展变革与客户中心产业发展
- 装饰装修施工应急预案措施
- 租车公司经营管理制度
- 浙江省温州市名校2025届英语八下期末教学质量检测试题含答案
- 深圳片区控制性详细规划设计导则2025
- 2025至2030中国森林防火行业现状供需分析及重点企业投资评估规划分析报告
- JG/T 336-2011混凝土结构修复用聚合物水泥砂浆
- 卫生院岗位体系与职责说明
- 关于工资结清协议书
评论
0/150
提交评论