长沙市中考数学历年(09-14)年最后两道压轴题集锦.doc_第1页
长沙市中考数学历年(09-14)年最后两道压轴题集锦.doc_第2页
长沙市中考数学历年(09-14)年最后两道压轴题集锦.doc_第3页
长沙市中考数学历年(09-14)年最后两道压轴题集锦.doc_第4页
长沙市中考数学历年(09-14)年最后两道压轴题集锦.doc_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

200925(本题满分10分)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元该产品每月销售量(万件)与销售单价(元)之间的函数关系如图所示(1)求月销售量(万件)与销售单价(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润销售额生产成本员工工资其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?421406080x(元)(万件)yO201025已知:二次函数的图象经过点(1,0),一次函数图象经过原点和点(1,b),其中且、为实数(1)求一次函数的表达式(用含b的式子表示);(2)试说明:这两个函数的图象交于不同的两点;(3)设(2)中的两个交点的横坐标分别为x1、x2,求| x1x2 |的范围26如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上, cm, OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒 cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1 cm的速度匀速运动设运动时间为t秒(1)用t的式子表示OPQ的面积S;(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;BAPxCQOy第26题图(3)当OPQ与PAB和QPB相似时,抛物线经过B、P两点,过线段BP上一动点M作轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比来源:Zxxk.Com201125使得函数值为零的自变量的值称为函数的零点。例如,对于函数,令y=0,可得x=1,我们就说1是函数的零点。 己知函数 (m为常数)。 (1)当=0时,求该函数的零点;(2)证明:无论取何值,该函数总有两个零点;(3)设函数的两个零点分别为和,且,此时函数图象与x轴的交点分别为A、B(点A在点B左侧),点M在直线上,当MA+MB最小时,求直线AM的函数解析式。26如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ。当点P运动到原点O处时,记Q得位置为B。(1)求点B的坐标;(2)求证:当点P在x轴上运动(P不与Q重合)时,ABQ为定值;(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。201225在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工已知生产这种产品的成本价为每件20元经过市场调研发现,该产品的销售单价定在25元到30元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为:(年获利=年销售收入生产成本投资成本)(1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)第二年,该公司决定给希望工程捐款Z万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围26如图半径分别为m,n(0mn)的两圆O1和O2相交于P,Q两点,且点P(4,1),两圆同时与两坐标轴相切,O1与x轴,y轴分别切于点M,点N,O2与x轴,y轴分别切于点R,点H(1)求两圆的圆心O1,O2所在直线的解析式;(2)求两圆的圆心O1,O2之间的距离d;(3)令四边形PO1QO2的面积为S1,四边形RMO1O2的面积为S2试探究:是否存在一条经过P,Q两点、开口向下,且在x轴上截得的线段长为的抛物线?若存在,请求出此抛物线的解析式;若不存在,请说明理由201325设是任意两个不等实数,我们规定:满足不等式的实数的所有取值的全体叫做闭区间,表示为对于一个函数,如果它的自变量与函数值满足:当时,有,我们就称此函数是闭区间上的“闭函数” (1)反比例函数是闭区间上的“闭函数”吗?请判断并说明理由; (2)若一次函数是闭区间上的“闭函数”,求此函数的解析式; (3)若二次函数是闭区间上的“闭函数”,求实数的值26如图,在平面直角坐标系中,直线与轴,轴分别交于点A,点B,动点P在第一象限内,由点P向轴,轴所作的垂线PM,PN(垂足为M,N)分别与直线AB相交于点E,点F,当点P运动时,矩形PMON的面积为定值2 (1)求的度数; (2)求证:;(3)当点E,F都在线段AB上时,由三条线段 AE,EF,BF组成一个三角形,记此三角 形的外接圆面积为,的面积为 试探究:是否存在最小值?若存在,请求出该最小值;若不存在,请说明理由 (第26题)201425在平面直角坐标系中,我们不妨把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(-2,-2),都是“梦之点”,显然“梦之点”有无数个。21教育名师原创作品(1)若点P(2,m)是反比例函数(n为常数,n0)的图像上的“梦之点”,求这个反比例函数的解析式;21*cnjy*com(2)函数(k,s为常数)的图像上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由;(3)若二次函数(a,b是常数,a0)的图像上存在两个“梦之点”A,B,且满足-22,=2,令,试求t的取值范围。26.如图,抛物线的对称轴为轴,且经过(0,0),()两点,点P在抛物线上运动,以P为圆心的P经过定点A(0,2),【来源:21cnj*y.co*m】(1)求的值; (收集整理cjzl)(2)求证:点P在运动过程中,P始终与轴相交;yxPAMON(3)设P与轴相交于M,N ()两点,当AMN为等腰三角形时,求圆心P的纵坐标。答案解析200925解:(1)当时,令,则解得 同理,当时,4分 (直接写出这个函数式也记4分)201025解:(1)一次函数过原点设一次函数的解析式为y=kx一次函数过(1,b) y=bx 3分来源:学*科*网(2)y=ax2+bx2过(1,0)即a+b=2 4分由得 5分 方程有两个不相等的实数根方程组有两组不同的解两函数有两个不同的交点 6分(3)两交点的横坐标x1、x2分别是方程的解 或由求根公式得出 8分ab0,a+b=2 2a1令函数 在1a2时y随a增大而减小 9分 10分26解:(1) CQt,OP=t,CO=8 OQ=8tSOPQ(0t8) 3分(2) S四边形OPBQS矩形ABCDSPABSCBQ32 5分四边形OPBQ的面积为一个定值,且等于32 6分(3)当OPQ与PAB和QPB相似时, QPB必须是一个直角三角形,依题意只能是QPB90 又BQ与AO不平行 QPO不可能等于PQB,APB不可能等于PBQ根据相似三角形的对应关系只能是OPQPBQABP 7分解得:t4 经检验:t4是方程的解且符合题意(从边长关系和速度)此时P(,0)B(,8)且抛物线经过B、P两点,抛物线是,直线BP是: 8分设M(m, )、N(m,) M在BP上运动 与交于P、B两点且抛物线的顶点是P当时, 9分 当时,MN有最大值是2设MN与BQ交于H 点则、SBHMSBHM :S五边形QOPMH3:29当MN取最大值时两部分面积之比是3:29 10分201125. (1)当=0时,该函数的零点为和。(2)令y=0,得=无论取何值,方程总有两个不相等的实数根。即无论取何值,该函数总有两个零点。(3)依题意有,由解得。函数的解析式为。令y=0,解得A(),B(4,0)作点B关于直线的对称点B,连结AB,则AB与直线的交点就是满足条件的M点。易求得直线与x轴、y轴的交点分别为C(10,0),D(0,10)。连结CB,则BCD=45BC=CB=6,BCD=BCD=45BCB=90即B()设直线AB的解析式为,则,解得直线AB的解析式为,即AM的解析式为。26、(1)过点B作BCy轴于点C,A(0,2),AOB为等边三角形,AB=OB=2,BAO=60,BC=,OC=AC=1,即B()(2)当点P在x轴上运动(P不与O重合)时,不失一般性,PAQ=OAB=60,PAO=QAB,在APO和AQB中,AP=AQ,PAO=QAB,AO=ABAPOAQB总成立,ABQ=AOP=90总成立,当点P在x轴上运动(P不与Q重合)时,ABQ为定值90。(3)由(2)可知,点Q总在过点B且与AB垂直的直线上,可见AO与BQ不平行。 当点P在x轴负半轴上时,点Q在点B的下方,此时,若ABOQ,四边形AOQB即是梯形,当ABOQ时,BQO=90,BOQ=ABO=60。又OB=OA=2,可求得BQ=,由(2)可知,APOAQB,OP=BQ=,此时P的坐标为()。当点P在x轴正半轴上时,点Q在嗲牛B的上方,此时,若AQOB,四边形AOQB即是梯形,当AQOB时,ABQ=90,QAB=ABO=60。又AB= 2,可求得BQ=,由(2)可知,APOAQB,OP=BQ=,此时P的坐标为()。综上,P的坐标为()或()。201225解答:解:(1)252830,把28代入y=40x得,y=12(万件),答:当销售单价定为28元时,该产品的年销售量为12万件;(2)当 25x30时,W=(40x)(x20)25100=x2+60x925=(x30)225,故当x=30时,W最大为25,及公司最少亏损25万;当30x35时,W=(250.5x)(x20)25100=x2+35x625=(x35)212.5故当x=35时,W最大为12.5,及公司最少亏损12.5万;对比1,2得,投资的第一年,公司亏损,最少亏损是12.5万;答:投资的第一年,公司亏损,最少亏损是12.5万;(3)当 25x30时,W=(40x)(x201)12.510=x2+59x782.5令W=67.5,则x2+59x782.5=67.5化简得:x259x+850=0 x1=25;x2=34,此时,当两年的总盈利不低于67.5万元,25x30;当30x35时,W=(250.5x)(x201)12.510=x2+35.5x547.5,令W=67.5,则x2+35.5x547.5=67.5,化简得:x271x+1230=0 x1=30;x2=41,此时,当两年的总盈利不低于67.5万元,30x35,答:到第二年年底,两年的总盈利不低于67.5万元,此时销售单价的范围是25x30或30x3526解答:解:(1)由题意可知O1(m,m),O2(n,n),设过点O1,O2的直线解析式为y=kx+b,则有:(0mn),解得,所求直线的解析式为:y=x(2)由相交两圆的性质,可知P、Q点关于O1O2对称P(4,1),直线O1O2解析式为y=x,Q(1,4)如解答图1,连接O1QQ(1,4),O1(m,m),根据两点间距离公式得到:O1Q=又O1Q为小圆半径,即QO1=m,=m,化简得:m210m+17=0 如解答图1,连接O2Q,同理可得:n210n+17=0 由,式可知,m、n是一元二次方程x210x+17=0 的两个根,解得:x=5,0mn,m=5,n=5+O1(m,m),O2(n,n),d=O1O2=8(3)假设存在这样的抛物线,其解析式为y=ax2+bx+c,因为开口向下,所以a0如解答图2,连接PQ由相交两圆性质可知,PQO1O2P(4,1),Q(1,4),PQ=,又O1O2=8,S1=PQO1O2=8=;又S2=(O2R+O1M)MR=(n+m)(nm)=;=1,即抛物线在x轴上截得的线段长为1抛物线过点P(4,1),Q(1,4),解得,抛物线解析式为:y=ax2(5a+1)x+5+4a,令y=0,则有:ax2(5a+1)x+5+4a=0,设两根为x1,x2,则有:x1+x2=,x1x2=,在x轴上截得的线段长为1,即|x1x2|=1,(x1x2)2=1,(x1+x2)24x1x2=1,即()24()=1,化简得:8a210a+1=0,解得a=,可见a的两个根均大于0,这与抛物线开口向下(即a0)矛盾,不存在这样的抛物线2013201425.(1) (2)由得当时, 当且s=1时,x有无数个解,此时的“梦之点”存在,有无数个; 当且s1时,方程无解,此时的“梦之点”不存在; 当,方程的解为,此时的“梦之点”存在,坐标为(,) (3)由得:则为此方程的两个不等实根, 由=2,又-22得:-20时,-42;02时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论