



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.2圆的对称性一、教学目标知识与技能1利用圆的轴对称性研究垂径定理及其逆定理;2运用垂径定理及其逆定理解决问题过程与方法1经历运用圆的轴对称性探索圆的相关性质的过程,进一步体会和理解研究几何图形的各种方法情感与态度1. 培养学生类比分析,猜想探索的能力2. 通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生学习实事求是的科学态度和积极参与的主动精神二、教学重点难点教学重点:利用圆的轴对称性研究垂径定理及其逆定理教学难点:垂径定理及其逆定理的证明,以及应用时如何添加辅助线三、教学环节第一环节 类比引入活动内容:1.等腰三角形是轴对称图形吗?2.如果将一等腰三角形沿底边上的高对折,可以发现什么结论?3.如果以这个等腰三角形的顶角顶点为圆心,腰长为半径画圆,得到的图形是否是轴对称图形呢?活动目的:通过等腰三角形的轴对称性向圆的轴对称性过渡,引导学生思考,培养学生类比分析的能力第二环节 猜想探索活动内容:1如图,AB是O的一条弦,作直径CD,使CDAB,垂足为M(1)该图是轴对称图形吗?如果是,其对称轴是什么?(2)你能图中有哪些等量关系?说一说你的理由条件: CD是直径; CDAB结论(等量关系):AM=BM;=;=.证明:连接OA,OB,则OA=OB.在RtOAM和RtOBM中,OA=OB,OM=OM,RtOAMRtOBM.AM=BM.点A和点B关于CD对称.O关于直径CD对称,当圆沿着直径CD对折时, 点A与点B重合,和重合, 和重合. =,=.2证明完毕后,让学生自行用文字语言表述这一结论,最后提炼出垂径定理的内容垂直于弦的直径平分这条弦,并且平分弦所对的两条弧3辨析:判断下列图形,能否使用垂径定理?OCDBA注意:定理中的两个条件缺一不可直径(半径),垂直于弦通过以上辨析,让学生对垂径定理的两个条件的必要性有更充分的认识4垂径定理逆定理的探索如图,AB是O 的弦(不是直径),作一条平分AB的直径CD,交AB于点M.(1)下图是轴对称图形吗?如果是,其对称轴是什么?(2)图中有哪些等量关系?说一说你的理由.条件: CD是直径; AM=BM 结论(等量关系):CDAB;=;=.让学生模仿垂径定理的证明过程,自行证明逆定理,并表述逆定理的内容平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.5辨析:“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧”如果该定理少了“不是直径”,是否也能成立?ODBAC反例:第三环节 知识应用活动内容:讲解例题及完成随堂练习1例:如图,一条公路的转弯处是一段圆弧(即图中,点0是所在圆的圆心),其中CD=600m,E为上的一点,且OECD,垂足为F,EF=90m.求这段弯路的半径解:连接OC,设弯路的半径为Rm,则OF=(R-90)mOECD根据勾股定理,得 OC=CF +OF即 R=300+(R-90).解这个方程,得R=545.所以,这段弯路的半径为545m.2随堂练习11400年前,我国隋朝建造的赵州石拱桥的桥拱是圆弧形,它的跨度(弧所对的弦长)为37.4米,拱高(即弧的中点到弦的距离)为7.2米,求桥拱所在圆的半径(结果精确到0.1米)3随堂练习2如果圆的两条弦互相平行,那么这两条弦所夹的弧相等吗?为什么?有三种情况:(1)圆心在平行弦外; (2)圆心在其中一条弦上;OCDBAOCDBAOCDBA (3)圆心在平行弦内四、效果检测五、课堂小结1利用圆的轴对称性研究
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论