




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考压轴题分析一、教学目标:1培养学生分析综合知识结合能力。2、掌握运动型问题中的不动量特殊点和动量之间的关系。3、注重分类讨论数型结合、方程及函数等数学思想方法的应用。二、教学进程:1、如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系已知OA3,OC2,点E是AB的中点,在OA上取一点D,将BDA沿BD翻折,使点A落在BC边上的点F处(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(第2题)(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由解:(1);(2)在中,设点的坐标为,其中,顶点,设抛物线解析式为如图,当时,解得(舍去);解得抛物线的解析式为如图,当时,解得(舍去)当时,这种情况不存在综上所述,符合条件的抛物线解析式是(3)存在点,使得四边形的周长最小如图,作点关于轴的对称点,作点关于轴的对称点,连接,分别与轴、轴交于点,则点就是所求点,又,此时四边形的周长最小值是2、如 图,已知直角梯形ABCD中,ADBC,A BBC ,AD2,AB8,CD10(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度、沿BADC方向,向点C运动;动点Q从点C出发,以1cm/s的速度、沿CDA方向,向点A运动,过点Q作QEBC于点E若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒问:当点P在BA上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值,并判断此时PQ是否平分梯形ABCD的面积;若不存在,请说明理由;在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由(备用图)解:在tDCH中,(2)经计算,PQ不平分梯形ABCD的面积,-3、如图,O的半径为1,等腰直角三角形ABC的顶点B的坐标为(,0),CAB=90,AC=AB,顶点A在O上运动(1)当点A在x轴上时,求点C的坐标;(2)当点A运动到x轴的负半轴上时,试判断直线BC与O位置关系,并说明理由;(3)设点A的横坐标为x,ABC的面积为S,求S与x之间的函数关系式,并求出S的最大值与最小值;(4)当直线AB与O相切时,求AB所在直线对应的函数关系式ABCOxy解:(1)当点A的坐标为(1,0)时,AB=AC=1,点C的坐标为(1,1);当点A的坐标为(1,0)时,AB=AC=1,点C的坐标为(1,1);(2)直线BC与O相切,过点O作OMBC于点M,OBMBOM=45, OM=OBsin45=1,直线BC与O相切(3)过点A作AEOB于点E在RtOAE中,AE2=OA2OE2=1x2,在RtBAE中,AB2=AE2+BE2=(1-x2) +(-x)2=3-2xABCOxyES=ABAC= AB2=(3-2x)= 其中1x1,当x=1时,S的最大值为,当x=1时,S的最小值为AB(C)OxyE(4)当点A位于第一象限时(如右图):连接OA,并过点A作AEOB于点E直线AB与O相切,OAB=90,又CAB=90,CAB+OAB=180,点O、A、C在同一条直线上,AOB=C=45,在RtOAE中,OE=AE=点A的坐标为(,)过A、B两点的直线为y=x+当点A位于第四象限时(如右图)点A的坐标为(,),过A、B两点的直线为y=x 教学反思:经过本节课的分析,提高了学综合分析问
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 移动社群意见领袖培养与管理创新创业项目商业计划书
- 自然语言处理(NLP)软件创新创业项目商业计划书
- 妇产科出科考试题及答案
- 华南理工大学自主招生学科自荐信范文
- 酒店管理新员工岗前培训心得体会
- 2025银行安保管理制度总结范文
- 2025版体育赛事活动外包服务人员劳动合同
- 2025年老旧房屋改造工程合同示范文本
- 2025年城市综合体项目策划与招商合同范本
- 2025版新能源汽车充电桩建设与运营合同参考样本
- 摩托训练考试题及答案
- 蚊虫消杀培训课件
- 秋季行车安全课件
- 贝尔面瘫个案护理
- 急性主动脉综合征非外科强化治疗中国专家共识解读 2
- 检测机构强制性标准规范执行措施
- 2025年驻村帮扶培训课件
- 产品生命周期管理制度
- 煤气设施检查管理制度
- 信息认证管理制度
- 电针参数优化研究-洞察及研究
评论
0/150
提交评论