已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版八年级数学下册 第17章 勾股定理导学案(Word版,共5份打包很实用) 有需更多试题,教案,课件,点击链接加入群聊【初中数学交流群】:(976612020)课件:6.20182019新人教版 八年级下 第20章 数据的分析(全章PPT课件)(共4份打包)7. 20182019新人教版 八年级下 第19章一次函数(全章PPT课件)(共9份打包)8. 20182019新人教版 八年级下第18章平行四边形(全章PPT课件和配套练习 )(共9份打包)9. 20182019新人教版 八年级下第17章勾股定理(全章PPT课件和配套练习 )(共8份打包)10. 人教版八年级数学下册 第16章 二次根式 PPT课件(4份打包)11. 人教版八年级数学下册 第17章 勾股定理 几何画板 课件(19份打包)第十七章 勾股定理17.1 教学备注学生在课前完成自主学习部分配套PPT讲授1.情景引入(见幻灯片3-5) 方法1:补形法(把以斜边为边长的正方形补成各边都在网格线上的正方形):左图:Sc=_;右图:Sc=_. 方法2:分割法(把以斜边为边长的正方形分割成易求出面积的三角形和四边形):左图:Sc=_;右图:Sc=_. 教学备注配套PPT讲授2.探究点1新知讲授(见幻灯片6-19)3.探究点2新知讲授(见幻灯片20-24) 要点探究探究点1:勾股定理的认识及验证想一想 1.2500年前,毕达哥拉斯去老朋友家做客,看到他朋友家用等腰三角形砖铺成的地面,联想到了正方形A,B和C面积之间的关系,你能想到是什么关系吗? 2.右图中正方形A、B、C所围成的等腰直角三角形三边之间有什么特殊关系? 3.在网格中一般的直角三角形,以它的三边为边长的三个正方形A、B、C 是否也有类似的面积关系?(每个小正方形的面积为单位1) 4.正方形A、B、C 所围成的直角三角形三条边之间有怎样的特殊关系?思考 你发现了直角三角形三条边之间的什么规律?你能结合字母表示出来吗?猜测:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么_.活动2 接下来让我们跟着以前的数学家们用拼图法来证明活动1的猜想.证法 利用我国汉代数学家赵爽的 赵爽弦图 证明:S大正方形_,S小正方形_,S大正方形_ S三角形S小正方形, _=_+_. 要点归纳:勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.公式变形: 探究点2:利用勾股定理进行计算典例精析例1如图,在RtABC中, C=90 . 若a=b=5,求c;若a=1,c=2,求b.教学备注3.探究点2新知讲授(见幻灯片20-24)变式题1 在RtABC中, C=90 . 若a:b=1:2 ,c=5,求a;若b=15, A=30 ,求a,c.方法总结:已知直角三角形两边关系和第三边的长求未知两边时,要运用方程思想设未知数,根据勾股定理列方程求解.变式题2 在RtABC中,AB4,AC3,求BC的长.方法总结:当直角三角形中所给的两条边没有指明是斜边或直角边时,其中一较长边可能是直角边,也可能是斜边,这种情况下一定要进行分类讨论,否则容易丢解.例2已知 ACB=90 ,CD AB,AC=3,BC=4.求CD的长.方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,它常与勾股定理联合使用针对训练求下列图中未知数x、y的值: 教学备注配套PPT讲授4.课堂小结(见幻灯片30)5.当堂检测(见幻灯片25-29) 注 意 1.在直角三角形中2.看清哪个角是直角3.已知两边没有指明是直角边还是斜边时一定要分类讨论1.下列说法中,正确的是 ( )A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在RtABC中, C=90 ,所以a2+b2=c2D.在RtA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC TS 63126:2025 EN Guidelines for qualifying PV modules,components and materials for operation at high temperatures
- 2025版心绞痛常见症状及护理护理技能
- 香奈儿的品牌传奇
- 商贸营销效果评估
- 项目授权协议书
- 食堂委托管理协议书
- 学校安全责任协议书
- 2025-2026学年安徽省合肥市八年级生物上册期中考试试卷及答案
- 2025版骨折常见症状及护理知识
- 放射性核素的使用与防护措施
- 船舶贸易智慧树知到答案章节测试2023年上海海事大学
- 文明之痕:流行病与公共卫生智慧树知到答案章节测试2023年四川大学
- 降低机械取样机故障次数燃料QC成果(取样故障)最新
- 《拒绝欺凌为成长护航》防欺凌主题班会课件
- 配电网工程施工工艺规范课件
- 疼痛总论课件
- 车辆授权委托书范本(精选11篇)
- 八年级第一次家长会课件
- DB37T 3567-2019 连续配筋混凝土路面设计与施工技术指南
- 广东省行政执法资格考试题库(共80页)
- 《房屋面积测算技术规程》DGJ32TJ131-2011
评论
0/150
提交评论