




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
公开号: US6933862B2专利名称:POWER CONSUMPTION STABILIZATION SYSTEM AND METHOD公开日: Aug.23,2005国际分类: H03M 7/00; H03K 17/16申请号: 10/684,992申请日: Oct. 14, 2003发明人:Robert M. R. Neff, Palo Alto, CA (US)申请人:Agilent Technologies, Inc., Palo Alto, CA (US)优先权号:US 2005/0078016 A1 Apr. 14, 2005同族专利:发明摘要:A source signal is provided. The source signal is XORed with a scrambling random signal to generate a scrambled signal. The scrambled signal is transmitted through the digital logic circuit. The scrambled signal is XORed with the descrambling random signal logically identical to the scrambling random signal to produce a descrambled signal identical to the source signal. In one embodiment, the scrambling random signal is transmitted through the digital logic circuit and used as the descrambling random signal. In another embodiment, the scrambling random signal and descrambling random signal are generated independently using pseudo-random number generators. In yet another embodiment, the scrambling random signal is self-synchronizing and is contained within the pattern of the scrambled signal.发明领域(关键词):The technical field of this disclosure is digital logic circuits, particularly digital logic circuits having a power consumption stabilization system and methods of stabilizing power consumption.发明背景:Power consumption in many digital logic circuits is a function of the number of signal level changes occurring in the circuit. There is low power consumption when signal levels are constant and high power consumption when the signal levels change often. For example, transmitting the sequence 10101010 requires twice the power of 10001000 and four times the power of 00001000 for a circuit where the power consumption is dependent on the frequency of transition.In large digital chips, logic circuits may be classified as control or data flow circuits. Control circuits determine where data goes or what operation will occur. Data flow circuits handle the actual information being processed, such as implementing arithmetic operations. Data flow circuits also pass data through the circuits from one location to another, such as from a register file to a memory unit. Data flow circuit power consumption depends on the number of transitions in the data as it propagates along the data path. The power consumption of a data flow circuit can swing from near zero consumption for a bit stream with a single value to maximum consumption for a bit stream with alternating values. Power consumption in control circuits can also be subject to peaking power consumption. For example, if an address counter has a large load, it will have high power consumption at certain control code changes such as from an all 1 code to an all 0 code. Power supplies and chip cooling must be designed for maximum power consumption. This increases chip size, complexity, and cost. Current techniques for stabilizing power consumption focus on managing power consumption through the design of the particular integrated circuit family. Such measures for mitigating power consumption can limit the design and layout of components in integrated circuits as well as increasing integrated circuit complexity.It would be desirable to have a digital logic circuit having a power consumption stabilization system that would overcome the above disadvantages.发明概述:The present invention reduces the maximum power consumption for any digital circuit in which power consumption depends on data activity. Signals are scrambled and randomized before entering the digital circuit and unscrambled on exiting. Peak power consumption is reduced because the scrambled signal passing through the digital circuit is random. The scrambled signal will rarely be a continuing series of 10101010 transitions, which would consume the greatest amount of power. These improvements are achieved without limiting the design and layout of components or increasing integrated circuit complexity.One aspect of the present invention provides a method for stabilizing power consumption in a digital logic circuit. A source signal is provided. The source signal is exclusive ORed with a scrambling random signal to generate a scrambled signal. The scrambled signal is transmitted through the digital logic circuit. The scrambled signal is exclusive ORed with a descrambling random signal logically identical to the scrambling random signal to produce a descrambled signal identical to the source signal.Another aspect of the present invention provides a system for stabilizing power consumption in a digital logic circuit. The system comprises a first exclusive OR (XOR) gate connected to receive a source signal and a scrambling random signal. The first XOR gate generates a scrambled signal, which is transmitted through the digital logic circuit. A second XOR gate is connected to receive the scrambled signal from the digital logic circuit and a descrambling random signal logically identical to the scrambling random signal, and generates a descrambled signal.The foregoing and other features and advantages of the invention will become further apparent from the following detailed description of the presently preferred embodiments, read in conjunction with the accompanying drawings. The detailed description and drawings are merely illustrative of the invention, rather than limiting the scope of the invention being defined by the appended claims and equivalents thereof权利要求:1. A method for stabilizing power consumption in a digital logic circuit, the method comprising:providing a source signal;XORing the source signal and a scrambling random signal to generate a scrambled signal;transmitting the scrambled signal through the digital logic circuit;passing the scrambling random signal around the digital logic circuit; andXORing the scrambled signal and a descrambling random signal logically identical to the scrambling random signal.2. The method of claim 1, additionally comprising storing the scrambling random signal.3. The method of claim 1, additionally comprising:generating the scrambling random signal using a firstpseudo-random number generator responsive to a reset signal; andge
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年互联网行业ARVR技术应用前景分析报告
- 2025年电子器材行业智能家居器材市场前景及发展趋势研究报告
- 2025年医疗服务行业远程医疗服务市场前景分析报告
- 2025年互联网教育行业未来发展前景预测报告
- 2025年清洁能源行业可再生能源发展现状与前景研究报告
- 2025年医疗大数据行业健康大数据应用前景报告
- 岳阳楼区2025湖南岳阳市岳阳楼区事业单位招聘44人笔试历年参考题库附带答案详解
- 安置房委托代建协议书6篇
- 定西市2025年甘肃省兰州市事业单位招聘(536人)笔试历年参考题库附带答案详解
- 四川省2025年四川乐至县引进急需紧缺专业人才笔试历年参考题库附带答案详解
- 住房供给调控预案
- 培训行业转介绍
- 文科物理(兰州大学)学习通网课章节测试答案
- 人教版高二数学(上)选择性必修第一册1.2空间向量基本定理【教学设计】
- catia考试图纸题目及答案
- pos机风险管理办法
- 2025年行业机器人边缘计算技术应用与场景分析
- 2025年安徽省公务员录用考试《行测》真题及答案
- 2025年加油站行业需求分析及创新策略研究报告
- 2025中国工业传感器行业市场白皮书
- 手机桌面市场深度解析
评论
0/150
提交评论