高中数学第一章立体几何初步1.2.1平面的基本性质与推论学案新人教B版必修2.doc_第1页
高中数学第一章立体几何初步1.2.1平面的基本性质与推论学案新人教B版必修2.doc_第2页
高中数学第一章立体几何初步1.2.1平面的基本性质与推论学案新人教B版必修2.doc_第3页
高中数学第一章立体几何初步1.2.1平面的基本性质与推论学案新人教B版必修2.doc_第4页
高中数学第一章立体几何初步1.2.1平面的基本性质与推论学案新人教B版必修2.doc_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.2.1平面的基本性质与推论学习目标1.掌握平面的基本性质和三个推论,会用三种语言表述性质与推论.2.了解异面直线的概念,能用符号语言描述点、直线、平面之间的位置关系.知识链接1.在同一平面内,两条直线的位置关系有平行、相交、重合.2.点和直线的位置关系有点在直线上和点在直线外.预习导引1.平面的基本性质(1)基本性质1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内,这时我们说,直线在平面内或平面经过直线.(2)基本性质2:经过不在同一条直线上的三点,有且只有一个平面.也可简单说成,不共线的三点确定一个平面.(3)基本性质3:如果不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直线.如果两个平面有一条公共直线,则称这两个平面相交.这条公共直线叫做两个平面的交线.2.平面基本性质的推论(1)推论1经过一条直线和直线外的一点有且只有一个平面.(2)推论2经过两条相交直线,有且只有一个平面.(3)推论3经过两条平行直线,有且只有一个平面.3.共面和异面直线(1)共面:空间中的几个点或几条直线,如果都在同一平面内,我们就说它们共面.(2)异面直线:既不相交又不平行的直线.要点一三种语言的转换例1用符号语言表示下列语句,并画出图形.(1)三个平面,相交于一点P,且平面与平面相交于PA,平面与平面相交于PB,平面与平面相交于PC;(2)平面ABD与平面BDC相交于BD,平面ABC与平面ADC相交于AC.解(1)符号语言表示:P,PA,PB,PC,图形表示如图(1)(2)符号语言表示:平面ABD平面BDCBD,平面ABC平面ADCAC,图形表示如图(2).规律方法(1)用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、几条直线且相互之间的位置关系如何,试着用文字语言表示,再用符号语言表示.(2)根据符号语言或文字语言画相应的图形时,要注意实线和虚线的区别.跟踪演练1根据下列符号表示的语句,说明点、线、面之间的位置关系,并画出相应的图形:(1)A,B;(2)l,mA,Al;(3)Pl,P,Ql,Q.解(1)点A在平面内,点B不在平面内,如图(1).(2)直线l在平面内,直线m与平面相交于点A,且点A不在直线l上,如图(2).(3)直线l经过平面外一点P和平面内一点Q,如图(3).要点二点线共面问题例2证明:两两相交且不过同一点的三条直线在同一平面内.证明方法一(纳入法)l1l2A,l1和l2确定一个平面.l2l3B,Bl2.又l2,B.同理可证C.又Bl3,Cl3,l3.直线l1、l2、l3在同一平面内.方法二(同一法)l1l2A,l1、l2确定一个平面.l2l3B,l2、l3确定一个平面.Al2,l2,A.Al2,l2,A.同理可证B,B,C,C.不共线的三个点A、B、C既在平面内,又在平面内.平面和重合,即直线l1、l2、l3在同一平面内.规律方法在证明多线共面时,可用下面的两种方法来证明:(1)纳入法:先由部分直线确定一个平面,再证明其他直线在这个平面内.(2)同一法:即先证明一些元素在一个平面内,再证明另一些元素在另一个平面内,然后证明这两个平面重合,即证得所有元素在同一个平面内.跟踪演练2已知直线ab,直线l与a,b都相交,求证:过a,b,l有且只有一个平面.证明如图所示.由已知ab,所以过a,b有且只有一个平面.设alA,blB,A,B,且Al,Bl,l.即过a,b,l有且只有一个平面.要点三点共线与线共点问题例3如图,在正方体ABCDA1B1C1D1中,点M、N、E、F分别是棱CD、AB、DD1、AA1上的点,若MN与EF交于点Q,求证:D、A、Q三点共线.证明MNEFQ,Q直线MN,Q直线EF,又M直线CD,N直线AB,CD平面ABCD,AB平面ABCD.M、N平面ABCD,MN平面ABCD.Q平面ABCD.同理,可得EF平面ADD1A1.Q平面ADD1A1.又平面ABCD平面ADD1A1AD,Q直线AD,即D、A、Q三点共线.规律方法点共线与线共点的证明方法:(1)点共线:证明多点共线通常利用基本性质3,即两相交平面交线的唯一性,通过证明点分别在两个平面内,证明点在相交平面的交线上,也可选择其中两点确定一条直线,然后证明其他点也在其上.(2)三线共点:证明三线共点问题可把其中一条作为分别过其余两条直线的两个平面的交线,然后再证两条直线的交点在此直线上,此外还可先将其中一条直线看作某两个平面的交线,证明该交线与另两条直线分别交于两点,再证点重合,从而得三线共点.跟踪演练3如图所示,已知四面体ABCD中,E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且2.求证:直线EG,FH,AC相交于同一点.证明E,F分别是AB,AD的中点,EFBD且EFBD.又2,GHBD且GHBD,EFGH且EFGH,四边形EFHG是梯形,其两腰所在直线必相交,设两腰EG,FH的延长线相交于一点P,如图,EG平面ABC,FH平面ACD,P平面ABC,P平面ACD,又平面ABC平面ACDAC,PAC,故直线EG,FH,AC相交于同一点.1.分别和两条异面直线都相交的两条直线一定().A.异面 B.相交C.不相交 D.不平行答案D解析和两条异面直线都相交的两条直线可能相交,也可能异面,但一定不平行.2.下列四个选项中的图形表示两个相交平面,其中画法正确的是()答案D解析画两个相交平面时,被遮住的部分用虚线表示.3.若点Q在直线b上,b在平面内,则Q,b,之间的关系可记作()A.Qb B.Qb C.Qb D.Qb答案B解析点Q(元素)在直线b(集合)上,Qb.又直线b(集合)在平面(集合)内,b,Qb.4.设平面与平面交于直线l,A,B,且直线ABlC,则直线AB_.答案C解析l,ABlC,C,CAB,ABC.5.(1)空间任意4点,没有任何3点共线,它们最多可以确定_个平面.(2)空间5点,其中有4点共面,它们没有任何3点共线,这5个点最多可以确定_个平面.答案(1)4(2)7解析(1)可以想象三棱锥的确4个顶点,它们总共确定4个平面.(2)可以想象四棱锥的5个顶点,它们总共确定7个平面.1.解决立体几何问题首先应过好三大语言关,即实现这三种语言的相互转换,正确理解集合符号所表示的几何图形的实际意义,恰当地用符号语言描述图形语言,将图形语言用文字语言描述出来,再转换为符号语言.文字语言和符号语言在转换的时候,要注意符号语言所代表的含义,作直观图时,要注意线的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论