高中数学第二章平面解析几何初步2.4空间直角坐标系课件新人教B版必修2.ppt_第1页
高中数学第二章平面解析几何初步2.4空间直角坐标系课件新人教B版必修2.ppt_第2页
高中数学第二章平面解析几何初步2.4空间直角坐标系课件新人教B版必修2.ppt_第3页
高中数学第二章平面解析几何初步2.4空间直角坐标系课件新人教B版必修2.ppt_第4页
高中数学第二章平面解析几何初步2.4空间直角坐标系课件新人教B版必修2.ppt_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章 平面解析几何初步 学习目标 1 了解空间直角坐标系 会用空间直角坐标系刻画点的位置 2 掌握空间两点的距离公式 2 4空间直角坐标系 1 预习导学挑战自我 点点落实 2 课堂讲义重点难点 个个击破 3 当堂检测当堂训练 体验成功 知识链接 在平面直角坐标系中 点P1 x1 y1 P2 x2 y2 的中点坐标为 两点的距离为 预习导引 1 空间直角坐标系及相关概念为了确定空间点的位置 我们在平面直角坐标系xOy的基础上 通过原点O 再作一条 使它与x轴 y轴都 这样它们中的任意两条都 轴的方向通常这样选择 从z轴的正方向看 x轴的正半轴沿方向转90 能与y轴的正半轴重合 这时 我们说在空间建立了一个 数轴z 垂直 互相垂直 逆时针 Oxyz O叫做 每两条坐标轴分别确定的平面yOz xOz xOy叫做 空间直角坐标系 坐标原点 坐标平面 2 空间中点的坐标过点P作一个平面平行于 垂直于x轴 这个平面与 的交点记为 它在的坐标为x 这个数x叫做点P的x坐标 过点P作一个平面平行于 垂直于y轴 这个平面与 的交点记为 它在的坐标为y 这个数y叫做点P的y坐标 yOz x轴 Px x轴上 xOz y轴 Py y轴上 过点P作一个平面平行于坐标 垂直于z轴 这个平面与的交点记为 它在的坐标为z 这个数z就叫做点P的z坐标 这样对空间的一点P 定义了三个实数的有序数组作为它的坐标 记作 其中x y z也可称为点P的坐标分量 xOy z轴 Pz z轴上 P x y z 3 三个坐标平面把空间分为部分 每一部分都称为一个 在每个卦限内 点的坐标各分量的符号是 4 空间两点的距离公式空间两点A x1 y1 z1 B x2 y2 z2 的距离d A B AB 特别地 空间任意一点P x y z 与原点的距离d O P OP 八 卦限 不变的 要点一求空间中点的坐标例1建立适当的坐标系 写出底边长为2 高为3的正三棱柱的各顶点的坐标 解以BC的中点为原点 BC所在的直线为y轴 以射线OA所在的直线为x轴 建立空间直角坐标系 如图 规律方法 1 题目若未给出坐标系 建立空间直角坐标系时应遵循以下原则 让尽可能多的点落在坐标轴上或坐标平面内 充分利用几何图形的对称性 2 求某点的坐标时 一般先找这一点在某一坐标平面上的投影 确定其两个坐标 再找出它在另一轴上的投影 或者通过它到这个坐标平面的距离加上正负号 确定第三个坐标 跟踪演练1画一个正方体ABCD A1B1C1D1 以A为坐标原点 以棱AB AD AA1所在的直线为坐标轴 取正方体的棱长为单位长度 建立空间直角坐标系 1 求各顶点的坐标 2 求棱C1C中点的坐标 3 求面AA1B1B对角线交点的坐标 解建立空间直角坐标系如图所示 且正方体的棱长为1 1 各顶点坐标分别是A 0 0 0 B 1 0 0 C 1 1 0 D 0 1 0 A1 0 0 1 B1 1 0 1 C1 1 1 1 D1 0 1 1 要点二求空间中对称点的坐标例2在空间直角坐标系中 点P 2 1 4 1 求点P关于x轴的对称点的坐标 解由于点P关于x轴对称后 它在x轴的分量不变 在y轴 z轴的分量变为原来的相反数 所以对称点为P1 2 1 4 2 求点P关于xOy平面的对称点的坐标 解由于点P关于xOy平面对称后 它在x轴 y轴的分量不变 在z轴的分量变为原来的相反数 所以对称点为P2 2 1 4 3 求点P关于点M 2 1 4 的对称点的坐标 解设对称点为P3 x y z 则点M为线段PP3的中点 由中点坐标公式 可得x 2 2 2 6 y 2 1 1 3 z 2 4 4 12 所以P3 6 3 12 规律方法任意一点P x y z 关于原点对称的点是P1 x y z 关于x轴对称的点是P2 x y z 关于y轴对称的点是P3 x y z 关于z轴对称的点是P4 x y z 关于xOy平面对称的点是P5 x y z 关于yOz平面对称的点是P6 x y z 关于xOz平面对称的点是P7 x y z 求对称点的问题可以用 关于谁对称 谁保持不变 其余坐标相反 的口诀来记忆 跟踪演练2求点A 1 2 1 关于坐标平面xOy及x轴的对称点的坐标 解如图所示 过点A作AM 坐标平面xOy交平面于点M 并延长到点C 使AM CM 则点A与点C关于坐标平面xOy对称 且点C 1 2 1 过点A作AN x轴于点N并延长到点B 使AN NB 则点A与B关于x轴对称且点B 1 2 1 点A 1 2 1 关于坐标平面xOy对称的点为C 1 2 1 点A 1 2 1 关于x轴对称的点为B 1 2 1 要点三空间中两点之间的距离例3已知 ABC的三个顶点A 1 5 2 B 2 3 4 C 3 1 5 1 求 ABC中最短边的边长 2 求AC边上中线的长度 规律方法解决空间中的距离问题就是把点的坐标代入距离公式计算 其中确定点的坐标或合理设出点的坐标是解题的关键 跟踪演练3已知两点P 1 0 1 与Q 4 3 1 1 求P Q之间的距离 2 求z轴上的一点M 使 MP MQ 解设M 0 0 z 由 MP MQ 得12 02 1 z 2 42 32 1 z 2 z 6 M 0 0 6 1 点 2 0 3 在空间直角坐标系中的 A y轴上B xOy平面上C xOz平面上D 第一象限内解析点 2 0 3 的纵坐标为0 所以该点在xOz平面上 1 2 3 4 5 C 1 2 3 4 5 2 在空间直角坐标系中 点P 3 4 5 与Q 3 4 5 两点的位置关系是 A 关于x轴对称B 关于xOy平面对称C 关于坐标原点对称D 以上都不对解析点P 3 4 5 与Q 3 4 5 两点的横坐标相同 而纵 竖坐标互为相反数 所以两点关于x轴对称 A 3 已知点A x 1 2 和点B 2 3 4 且 AB 则实数x的值是 A 3或4B 6或2C 3或 4D 6或 2 1 2 3 4 5 解得x 2或x 6 D 4 已知A 3 2 4 B 5 2 2 则线段AB中点的坐标为 解析设中点坐标为 x0 y0 z0 1 2 3 4 5 中点坐标为 4 0 1 4 0 1 1 2 3 4 5 5 在空间直角坐标系中 点A 1 0 1 与点B 2 1 1 间的距离为 课堂小结 1 结合长方体的长宽高理解点的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论