CA6132数控车床的改造设计【含CAD图纸、说明书全稿】
收藏
资源目录
压缩包内文档预览:
编号:59870425
类型:共享资源
大小:1.43MB
格式:ZIP
上传时间:2020-03-20
上传人:好资料QQ****51605
认证信息
个人认证
孙**(实名认证)
江苏
IP属地:江苏
45
积分
- 关 键 词:
-
含CAD图纸、说明书全稿
CA6132
数控车床
改造
设计
CAD
图纸
说明书
- 资源描述:
-
购买设计请充值后下载,,资源目录下的文件所见即所得,都可以点开预览,,资料完整,充值下载就能得到。。。【注】:dwg后缀为CAD图,doc,docx为WORD文档,有不明白之处,可咨询Q:414951605
- 内容简介:
-
本科毕业设计说明书I摘要摘要随着机械产品质量的性质和质量的提高,因此对机床的不仅需要具有较高的精度和生产率,而且应该能够迅速的适应产品零件的变换。又因为数控机床的费用很高,所以普通机床的数控改造是必需的。 本书是对数控车床的改造和设计,因为设计的是简易型经济数控,所以在考虑具体方案时,基本原则是在满足需求的前提下,对于机床尽可能减小改动量,以降低成本。主要改造了纵向和横向两个方向的进给系统。通过运用计算机对数据进行处理,然后运用脉冲控制步进电机,来实现两个方向的进给。 本书主要分为三个部分,第一部分是方案的拟定,第二部分使机械部分的设计计算,第三部分是控制系统的设计计算。 改造的方法是将纵向和横向的丝杠换为滚珠丝杠,并安上步进电机。步进电机经过齿轮减速后,带动滚珠丝杠的转动,从而实现工作台的自动进给。关键词:关键词:精度,滚珠丝杠,脉冲,进给,步进电机。本科毕业设计说明书IIAbstact Along with the property of the machine product quality and the exaltation of the quality, the machine have higher precision and rate of production, and it can quick apply the product parts of transformation.Again the expenses of the numerical control machine are very cost, so it is very necessary that common machine are changed the numerical control machine . This book is the projet that control lather are changed and designed, because designning is an economy numerical control machine , under the premise that fill requirement, it is demanded to let up to change the momentum of the machine to low cost.It is changed by lengthways and horizontal organization full general originall.Use the computer to deal with the data,then servo the electrical machinery with the pulse control,and realizes two directional feeds. This book main is divided into three part, the first part is the project of draw-up, the second part is the calculation of machnical design, the third part is control system of design calculation. The method of reformation change lengthways and horizontal to ballscrew , and build in repeating . After retardment of the gear, the repeating can carry out aggression of desk automatizationly by driving ballscrew running. Keyword:precision,ballscrew,pulse,feed,repeating.本科毕业设计说明书III目录目录绪论绪论 1第第 1 1 章章 方案的拟定方案的拟定21.11.1 数控改造的必要性数控改造的必要性 2 1.21.2 数控改造的目的数控改造的目的 2 1.31.3 设计内容设计内容 3 1.41.4 数据准备数据准备 3 1.51.5 基本方案的比较和选择基本方案的比较和选择 3 1.61.6 总体方案的确定总体方案的确定 5第第 2 2 章章 机械部分设计计算机械部分设计计算72.12.1 确定系统脉冲当量确定系统脉冲当量 7 2.22.2 切削力的计算切削力的计算 72.32.3 纵向滚珠丝杠设计计算纵向滚珠丝杠设计计算 8 2.3.1 滚珠丝杠螺母副的设计计算 82.3.2 计算最大动负载 82.3.3 传动效率计算 102.3.4 刚度验算 102.3.5 稳定性的验算 112.3.6 滚珠丝杠副的等级精度 112.42.4 横向滚珠丝杠的设计计算横向滚珠丝杠的设计计算 112.4.1 计算轴向力 11 2.4.2 计算最大负载 C 11 2.4.3 传动效率计算 12 2.4.4 刚度验算 12 2.4.5 稳定性计算 132.52.5 塑料导轨的应用塑料导轨的应用 132.62.6 进给伺服系统传动的计算进给伺服系统传动的计算 13 2.6.1 纵向传动系统计算13本科毕业设计说明书IV 2.6.2 横向传动系统计算172.72.7 步进电机的计算和选用步进电机的计算和选用 20 2.7.1 纵向进给步进电机的计算202.7.2 横向进给步进电机的计算23第第 3 3 章章 控制部分设计计算控制部分设计计算27 3.13.1 控制系统的功能控制系统的功能27 3.23.2 CPUCPU 和存储器和存储器27 3.33.3 时钟电路时钟电路 28 3.43.4 复位方式复位方式29 3.53.5 I/OI/O 接口电路接口电路29 3.63.6 光电隔离器功放电路设计光电隔离器功放电路设计31 3.6.1 驱动回路的时间常数 31 3.6.2 时间常数为 31 3.6.3 高压电源的确定 31 3.6.4 元器件的确定 31参考文献参考文献35致谢致谢 36附件附件 37毕业设计说明书 1绪绪 论论 机械工程为国民经济建设和社会发展提供各类机械装备和生产制造技术以创造物质财富和提高社会文明水准的重要工程领域,是与人类社会活动关系十分密切、应用非常广泛的工程领域。他是一个传统的工程领域,自人类有史以来,就为生产活动所关注,第一次工业革命、第二次工业革命乃至当前的信息革命,无不直接或间接的同机械工程的发展有密切关系;它也是一个发展迅速的工程领域,随着电子技术、自动化技术、计算机及软件技术、材料科学的发展和渗透,充实和丰富了本领域的基础,拓宽和发展了本领域的研究范畴,促进机械产品和生产过程向精密化、自动化、智能化、连续化、高效化、集成化方向发展。 本领域涉及机械设计、制造、试验、使用、维修等基础理论、技术和方法。并与材料工程、动力工程、电气工程、电子与信息工程、控制工程、计算机技术、工业设计工程等工程领域及力学学科密切相关。 随着社会生产和科学技术的发展,机械、电子产品的性能和质量不断提高,产品更新换代的周期在缩短,因此对车床的要求也在提高,不仅要有较高的精度和生产率,而且能迅速的适应机械产品的变换。社会的发展促进了数控机床的诞生和发展。随着电子技术特别是计算机技术的发展,数控技术迅速的发展起来了。近十几年来,尤其是改革开放以来,我国特别注重数控技术的发展,加快了数控机床的引进与开发,促进了数控机床的普及。各大企业都不断的购进数控机床,来扩大再生产和替换旧设备,数控机床在企业中不再是凤毛麟角,而是不断的普及。但数控机床的成本比较高,在这种情况下,普通机床的改造就成了一种必要。毕业设计说明书 2第第 1 1 章方案的拟定章方案的拟定1.11.1 数控改造的必要性数控改造的必要性 数控机床可以较好的解决形状复杂、精密、多变零件的加工问题,可以稳定加工质量,提高生产率,但是数控机床的应用还是受到其他条件的限制: (1) 目前很多企业都有很多普通机床,完全用数控机床代替很不现实,而且替代后闲置下来的机床会造成很大的浪费。 (2) 国内定购数控机床的交货期长,往往不能满足急需。 (3) 数控机床价格昂贵,对很多企业是一很大障碍。 (4) 通用数控机床对很多企业来说,功能剩余。要解决上述问题,普通机床的数控化改造是必由之路。从欧美等工业化国家的经验来看,机床的数控改造必不可少。因此,普通机床的数控改造不但有必要,而且大有可为尤其对一些中小企业更是如此。1.21.2 数控改造目的数控改造目的 (1) 为了提高生产进行数控改造。 (2) 从提高资本效率出发,改造闲置旧设备,发挥机床的原有功能和改造后的新增功能,提高机床的使用价值。 (3) 为了适应多品种、小批量零件生产而进行数控改造。 (4) 为了使技术等级较低的工人也能加工出高质量的产品和提高生产率而进行的数控改造。 (5) 为了减少整个设备投资计划而进行数控改造。 通过毕业设计,学习系统的运用所学的知识和技能解决实际工程问题的本领,巩固和加深对所学知识的理解,并且通过毕业设计的实践扩大和补充知识,使认识提高到一个新的水平。通过毕业设计的实践,培养调查研究的习惯和工作能力,练习查阅资料和有关标准,查阅工具书或参考书,合理选择设计计算公式,正确计算,并能以图纸和说明书表达设计的思想和结果。通过毕业设计,不但要提高解决具体问题的独立工作能力,具体动脑动手能力,而且应树立正确的设计和科研思想,加强科学性,牢固树立实事求是和严肃认真的工作态度。毕业设计说明书 31.31.3 设计内容设计内容将一台 CA6132 普通车床改造成数控车床。结合毕业设计的工作量和时间限制,机械部分主要 2 个坐标轴,完成机械结构设计,零件及参数的选择,部分计算过程;电器和微机部分主要有系统框图,部分设计计算说明。要求图纸不少于相当于 2.5张 A0 图。1.41.4 数据准备数据准备1.原机床数据 原机床有关数据为:最大工件直径 最大工件长度:340 750(mm),最大加工直径:床身上 340(mm)刀架上 180(mm) ,最大加工长度:650(mm) ,主轴转速:202000r/min,电动机功率 3kw.2.纵向进给系统的数据时间常数 T=25ms;滚珠丝杠导程 S=6mm;脉冲当量;0.01/mm step布距角;0.75 /step。快速进给速度max2/minVm3.横向进给系统的数据时间常数 T=25ms;滚珠丝杠导程 S=5mm,左旋;脉冲当量;0.005/mm step布距角;0.75 /step。快速进给速度max1/minVm1.51.5 基本方案的比较和选择基本方案的比较和选择 1、伺服驱动 在我国设备数控化改造的一段时间里,较多采用步进电机作为伺服驱动元件。步进电机是一种特殊结构的电机,它利用通电励磁绕组产生反应力矩,将脉冲电信号的能量转换为机械位移的机电执行元件。当励磁绕组按一定规律获得分配脉冲时,毕业设计说明书 4步进电机的转子就会转动。转子转过的角度与输入的脉冲个数有较严格的比例关系,而且转动与输入脉冲在时间上同步,因此可以利用这些特点控制运动的速度和位移量。 步进电机的优点是结构简单,电器控制和驱动电路也简单,体积小,重量轻,价格便宜,设计制造简单,容易调试,使用维修方便。位移精度较好,对各种干扰因素不敏感,结构误差不会累积。另外,机电时间常数小,反应快。但步进电机也有缺点,主要是容易丢步,启动频率低,工作频率也不够高,低频时振动大,冲击大,有时还有自激震荡。步进电机没有过载能力,当工作条件变动时,可能造成失误,因此步进电机多用于负载较小,负载变化不大或者要求不太高的经济型简易型数控设备中。 由于步进电机的没有过载能力,高速时扭矩下降很多,容易丢步。开环由于没有反馈校正作用,一旦丢不容易造成工件报废,严重时甚至发生事故,而且如果不能及时发现还会造成工件的成批报废,因此实际应用是不可靠。 采用直流或交流伺服电机闭环控制方案,结构复杂,技术难度大,调试和维修困难得多,造价也高。闭环控制可以达到很好的机床精度,能补偿机械传动系统中各种误差,消除减息、干扰等对加工精度的影响,一般应用于要求高的数控设备中。另外,由于闭环控制使机械传动的各个环节都综合作用于反馈信号,因此对系统的稳定性造成影响。任何一个环节设计制作不当都可能造成系统失稳,所以相应的要求系统中每一个影响因素都严格控制把关。由于改造数控铣床的目标共建加工精度不十分高,采用闭环系统的必要性不大。采用直流或者交流伺服电机的半闭环系统,其性能介于开缓和闭环控制之间。由于调速范围宽,过载能力强,又采用反馈控制,因此性能远优于步进电机开环控制;反馈环节不包括大部分机械传动元件,调试比闭环简单,系统的稳定性较易保证,所以比闭环容易实现。但是采用半闭环控制,调试比开环控制步进电机要复杂,设计上也有自身的特点,技术难度大。本设计任务的要求不高,是经济型数控的改造,通常的情况下均采用以步进电机驱动的开环控制。因为开环控制具有结构简单、设计制造容易、控制精度好、容易调试、价格便宜、使用维修方便等优点。缺点是步进电机没有过载能力,启动频率低,工作频率也不高等。开环控制多用于负载变化不大或者要求不高的经济型数控设备中。经过上述比较,决定采用开环控制系统。毕业设计说明书 5 2.数控装置数控装置的选择也有多种方案,例如,可以全部自己设计、制作;可以采用单板机或 STD 模块改制;可以选用现成的数控装置做少量的适用化改动或配接。在工厂的实际应用中,一半多采用以下两种解决办法。一种情况是所需的功能和要求有现成的数控装置可以满足,这是绝大多数采用买现成产品的方案,因为自行设计制作不但浪费时间,投资也不一定能省,往往是投资更多,而且质量也不容易保证。另一种情况是买不到现成产品来实现有些特殊功能,这时大多数采取买性价比尽量高的性能接近的装置,然后自行补充或改造,来满足设计要求。但是作为毕业设计,即使采用上述两种数控装置的设计方案,也需要对其结构、原理、控制方式等有所了解,才能提出自己的处理办法,也可以采用自行设计数控装置的方案和数控装置,可以更全面的锻炼学生运用计算机、数控系统硬件电路的设计和应用的能力,其难度比较大,也为今后从事其他类似的工作打下坚实的基础,也为今后在普通机床进行经济型数控改造时采用后两种方法奠定了基础。本设计采用自行设计数控装置的方法。 3.其他电气装置 在数控化改造中,还需要结合数控装置和伺服驱动的特点配置其他电气部分,包括强、弱点信号的变换、传输或必要的处理,其中对输入/出接口要考虑是否有隔离、屏蔽的要求;此外,还要配置所需的电源,各种保护电路,检测显示等辅助电路。 4.机械部分在设备的数控化改造中,虽然核心工作是数控,涉及较多的是微机、电子和电气,但绝不是全部。如果忽视了机械方面按照数控机床的特点进行必要的改动,或者在改造中设计制造不尽合理,结果会给数控化改造带来意想不到的困难,甚至会因为机械问题而导致失败。1.61.6 总体方案的确定总体方案的确定查看了 CA6132 车床及有关资料,并且参考数控车床的改造经验,确定总体方案:采用微机对数据进行计算处理,由 I/O 接口输出布进脉冲,经一级齿轮减速后,带动滚珠丝杠转动,从而实现纵向和横向的进给运动。由于设计的是简单性经济数控,所以在考虑具体方案时,基本原则是在满足需毕业设计说明书 6要的前提下, 对于机床尽可能的减小运动量,以降低成本。微机参考 TP801 单板机的线路。主要是因为 Z80CPU 在我国的数控改造应用较普遍,各种应用软件较多,系统开发较容易,而且其价格较低廉。Z80 有独立的 I/O指令,指令个市与执行时间较短,有利于缩短扫描现场机床工作的周期。直流步进电机参照西安微电机研究所的产品样品选取,便于就近得到部件。滚珠丝杠参照汉江机床厂的产品样本选取 FC1B 系列,即外插管变螺距型滚珠丝杠副。其优点是螺母的轴向尺寸小,而已经预加载荷消除间隙。纵向进给机构的改造:拆除原机床的进给箱和溜板箱,利用原机床进给箱的安装孔和销钉孔安装齿轮箱体。滚珠丝杠安装在原丝杠的位置,两端仍采用原固定方式。这样可减少改装工作量,并由于滚珠丝杠的摩擦系数比原丝杠的小,从而使纵向进给整体刚度只可能增大。横向进给机构的改造:保留原手动装置机构,用于微进给和机床刀具对零件操作,原有的支承结构也保留。步进电机齿轮箱体安装在机床后侧。为了便于安装滚珠丝杠副,丝杠轴不是整体的,而采用分移式的,然后用套筒刚性连接。纵横向进给机构都采用了一级齿轮减速,并用双齿轮错齿法消除间隙。双片齿轮间则没有见弹簧自动消除间隙。因为弹簧的弹力很难适应负载的变化情况。当负载大时,弹簧弹力显小,起不到消除间隙之目的;当负载小时,弹簧力又显大,则加速齿轮的磨损。因此,采用人工调整,螺钉紧固的办法消除间隙。纵向齿轮箱和溜板均加外罩,以保持机床原外观,起到美化机床的作用,在溜板箱上安装了纵横向快速进给按钮和急停按钮,以适应机床调整时的操作需要和遇到意外情况时的紧急处理需要。毕业设计说明书 7第第 2 2 章章 机械部分设计计算机械部分设计计算 伺服系统机械部分设计计算的内容包括:确定系统的负载,确定系统的脉冲当量,运动部件的惯量的计算,空载启动切削力距的计算,确定伺服电机,传动及导向元件的设计、计算及选用,绘制机械部分装配图及工作图等,分述如下:2.12.1 确定系统脉冲当量确定系统脉冲当量 任务书给定脉冲当量:纵向为 0.01mm/步,横向为 0.005mm/步。2.22.2 切削力的计算切削力的计算 切削力的计算可通过具体加工条件、不同工况,选择合理的切削用量,用切削量来计算切削力。但是用切削量来计算切削力虽然比较准确,但只能适用于某种工作的专用机床。对于通用机床的数控化改造,由于切削用量选择的范围较大,这样会导致切削力计算结果差别很大。这里的方法是,按照需要数控化改造设计的 CA6132主要电机功率来计算切削力。具体方法为:由机床设计手册 可知,切削功率eNN K 式中:N电机功率,查机床说明书,为 3kw; 主动系统总功率,一般为 0.6-0.7,取 0.65; K进给系统系数,取 0.96。 则=3x0.65x0.96=1.872KWeN又因为 =6120/veNeN 式中:v切削线速度,取 100m/min。主切削力毕业设计说明书 86120 1.872114.56100zFkgf由金属切削力原理 可知,主切削力=zFXFZYFZTFZFZPCfk查表得=188kgf/FZC2mmXFZ=1,YFZ=0.75,TFZ=1 当=时,切削深度为=2mm,走刀量为 f=0.3mm.次参数作为下边计zF114.56kgfp算的依据。 从机床设计手册中可得,在一般外圆车销时 =(0.10.6) =(0.150.7)xFzFYFzF 取 =0.5=0.5 114.56=57.28kgfxFzF =0.6 114.56=68.74kgfYF2.32.3 纵向滚珠丝杠螺母副的设计、计算和选定纵向滚珠丝杠螺母副的设计、计算和选定.1 滚珠丝杠螺母副的设计、计算滚珠丝杠螺母副的设计、计算首先要选择结构类型,确定滚珠循环方式,滚珠丝杠的预紧方式。结构类型确定后,再计算其他技术参数,包括: 公称直径 d,丝杠外径 d,导程 Lo,滚珠的圈数 j,列数 k 等。(1) 滚珠循环方式滚珠循环方式分为外循环和内循环两大类,外循环又分为螺旋槽式和插管式。插管式为外循环式,结构简单,制造容易,弯管由两部分组成,采用冲压件,工艺性好。 (2) 滚珠丝杠的预紧方式 滚珠丝杠的预紧方式有: 双螺母垫片式、双螺母螺纹式、双螺母齿差式、单螺母导程式。双螺母垫片式结构简单,刚性好,装卸方便。(3) 计算轴向力 由机床数控系统 一书可得,综合导轨车床丝杠的轴向力毕业设计说明书 9 P=k+(+W)xFfzF式中,k=1.15, =0.150.18,取 0.16。f 则 P=1.15 57.28+0.16(114.56+80)=97kgf .2 计算最大负载计算最大负载 C C360100060,10swHVn TCL f f P LnL 滚珠丝杠导程,初选为 6mm0L 最大切削力下得进给速度,可取最高进给速度的(1/21/3) ,sV T使用寿命 运转系数,一般取=0.51.2wfwf 硬度系数Hf 纵向轴向力mF L寿命,以为单位。610由知经济型数控机床系统表 1机器类型使用寿命(h) 通用机械500010000普通机械10000自动控制机械及机床15000仪器装置15000航空机械1000表 2运转状态运转系数无冲击的圆滑状态1.01.2一般运转1.21.5有冲击的运转1.52.5毕业设计说明书 10表 3HRC6057.55552.55047.54542.5403025硬度系数1.02.05.01015 所以: 取工件直径 D=80mm,查表的 T=1500h,则 1000 100 0.320 /min3.14 80 3nr所以 =3wHCL f f P318 1.2 1 54.91731695kgfN 根据汉江机床厂滚珠丝杠产品样本,选取滚珠丝杠公称直径为。其额定动荷32载是 10689N,所以强度足够用 。.3 传动效率计算传动效率计算 其中:tantan() 螺旋升角,则有0000arctan,6,32,LLmm dmmd03 25 摩擦角,所以:10 00tan3 250.953tan(3 2510 ).4 刚度验算刚度验算滚珠丝杠螺母副的轴向变形会影响进给系统的定位精度和运动的平稳性,因此应该考虑以下引起轴向变形的因素: (1) 丝杠的拉伸或压缩变形量;在总的变形量中占的比重较大,计算:1 00,mF LLLLEFL 毕业设计说明书 11222.8031()3.1442Fd 在工作负载作用下引起每一导程的变化量, (mm)LmF 工作负载即进给引力, (N)mF 滚珠丝杠的导程, (mm)0L E材料的弹性模数,对钢 E=6220.6 10 ,(.)N mm F滚珠丝杠的界面设计(按内径确定) ,2mm L滚珠丝杠在支承件的受力长度 “+”用于拉伸, “-”用于压缩 166257.28 9.8 0.62.66 102.803120.6 10()3.142Lcm 滚珠丝杠副扭矩引起得到成变化量很小,可忽略,所以 6401002.66 104.44 10/4.44/0.6LLcm mm mL 查表知 E 级精度丝杠允差 15,故刚度足够。m.5 稳定性的验算稳定性的验算 由于原丝杠直径30mm,现选用的丝杠直径为32mm,支承方式不变,所以稳定性不存在问题,故不在验算。.6 滚珠丝杠副的精度等级滚珠丝杠副的精度等级滚珠丝杠副的精度,按机械工业部标准 JB3162.2-91,分为七个等级,即1、2、3、4、5、6、7、10 级,1 级精度最高,依次降低。2.42.4 横向滚珠丝杠的设计计算横向滚珠丝杠的设计计算.1 计算轴向力计算轴向力由机床数控系统 一书可得,综合导轨车床丝杠的轴向力 P=k+(+W)yFfzF毕业设计说明书 12式中,k=1.4, =0.2。f 则 P=1.15 28.64+0.2(57.28+30)=50.39kgf.2 计算最大负载计算最大负载 C C360100060,10swHVn TCL f f P LnL 滚珠丝杠导程,初选为 6mm0L 最大切削力下得进给速度,可取最高进给速度的(1/21/3) ,sV T使用寿命 运转系数,一般取=0.51.2wfwf 硬度系数Hf 纵向轴向力mF L寿命,以为单位。610 =3wHCL f f P313.5 1.2 1 50.391441411kgfN 根据汉江机床厂滚珠丝杠产品样本,选取滚珠丝杠公称直径为。其额定动荷载20是 5393N,所以强度足够用 。.3 传动效率计算传动效率计算 其中:tantan() 螺旋升角,则有0000arctan,5,20,LLmm dmmd04 33 摩擦角,所以:10 00tan4 330.965tan(4 3310 ).4 刚度验算刚度验算滚珠丝杠螺母副的轴向变形会影响进给系统的定位精度和运动的平稳性,因此应该考虑以下引起轴向变形的因素:毕业设计说明书 13 (1) 丝杠的拉伸或压缩变形量;在总的变形量中占的比重较大,计算:1 00,mF LLLLEFL 222.8031()3.1442Fd 在工作负载作用下引起每一导程的变化量, (mm)LmF 工作负载即进给引力, (N)mF 滚珠丝杠的导程, (mm)0L E材料的弹性模数,对钢 E=6220.6 10 ,(.)N mm F滚珠丝杠的界面设计(按内径确定) ,2mm L滚珠丝杠在支承件的受力长度 166250.39 9.8 0.51.97 102.803120.6 10()3.142Lcm 6401001.97 103.94 10/3.94/0.5LLcm mm mL 表知 E 级精度丝杠允差 15,故刚度足够。m.5 稳定性计算稳定性计算 由于选用的滚珠丝杠的直径于原丝杠直径相同,而支承方式由原来的一端固定,一端悬空。变为一端固定,一端向支撑,所以稳定性增大,故不再验算。2.52.5 塑料导轨的应用塑料导轨的应用 目前,塑料导轨在普通机床上仍有广泛的应用,但其静摩擦系数大,动摩擦系数随速度变化而变化,摩擦损失大,低速时易出现爬坡现象而降低运动部件的定位精度。因此,目前在数控机床上不再使用,而代之以铸铁塑料或镶钢塑料导轨。这次设计选用的贴塑导轨。聚四氯乙烯软胶带是以聚四乙烯为基体,加入青铜粉,二硫化物和石墨等添加剂混合而成。它具有摩擦性好、减震性好等特点。这种胶带由于工艺简单,对原有导轨在普通机床上的改造有广泛应用。毕业设计说明书 142.62.6 进给伺服系统传动的计算进给伺服系统传动的计算 由于步进电机的工作特点是一个脉冲走一步,每一步都有一个加速过程,因而对负载惯量很敏感。为满足负载惯量尽可能小的要求,同时也满足一定的脉冲当量,常用齿轮降速传动。.1 纵向传动系数计算纵向传动系数计算 选定齿轮类型、精度等级、材料 (1) 、纵向齿轮传动组初步选用直齿圆柱齿轮传动(2) 、选精度等级,由机械设计手册得:表 5机器名称精度等级机器名称精度等级汽轮机36拖拉机68金属切割机床38通用减速器68航空发动机48锻压机床69轻型汽车58起重机710重载汽车79农用机器811故选用 8 级精度。(3) 、 材料选择: 由机械设计手册选择小齿轮材料为 45(调质) ,硬度 280HBS。大齿轮材料为45#钢(调质) ,硬度 240HBS,二者材料硬度差 40HBS。 (4) 、 选齿轮齿数及计算各圆直径:传动比 i=0.75 61.25360360 0.01pS故取=32 =401Z2Z m=2mm b=20mm 20。 =m=64mm =m=80mm1d1Z2d2Z =68mm =84mm*112aaddh*222aaddh毕业设计说明书 15 =59mm =75mm112ffddh222ffddh =72mm122dda 按齿面接触硬度校核 (1) 由机械设计手册公式: 1(1)tHHEHKFZ Zbd 将、代入上式得:112tTFd1dbd132(1)HHEHdKTZ Zb 式中:齿轮传递的转矩,单位为 N.mm.1T 齿轮的分度圆直径,单位为 N.mm1d 为齿宽系数,计算公式为,式中 b 为齿轮宽度,单位为 mm,d1dbd k载荷系数,AvHHKK K KK 由机械设计手册,使用系数AK表 6原动机工作特性均匀平稳(如机床进给机构、通风机)中等颤动(如重型升降机、起重机回转机构)严重冲击(如冲床、挖掘机、重型离心机)均匀平稳1.001.251.75 或更大中等颤动1.251.502.00 或更大严重冲击1.501.752.25 或更大 由表选使用系数 1.00 同理可得:,所以:1.4,1.2,1.1vHHKKK毕业设计说明书 16 =1.81 1.4 1.2 1.1K (2)分别为区域系数(标准直齿轮取 2.5) ,弹性影响系数。由机械设计HEZ Z手册表 106 知齿轮材料为段钢时,弹性影响系数取 189.8。 (3) 由机械设计图册 10-21d 按齿面硬度查的小齿轮的接触疲劳强度极限为600Mpa;大齿轮的接触疲劳强度极限为 550Mpa。 (4) 由图 10-19 接触疲劳寿命系数:120.9,0.95HNHNKK (5)计算接触疲劳许用压力,取失效概率为 1%,安全系数 S=1,由式 10-21 得: 11lim122lim2/0.9 600540/0.9 550522HHNHHHNHKSMPaMPaKSMPaMPa (6) 校核 对于齿数 32 与齿数为 40 的齿轮配合: 小齿轮传的扭矩:,为电机功率单位为 Kw,n1 为扭矩。16119.55 10/TP n1P由已知条件原机床的进给电机功率为 3KW,计算得: 619.55 103/200014325TN m则大齿轮传递的扭矩为:14325 40/3217906N m为配合齿轮的齿数比:,齿宽系数将1.251220/640.3,20/800.25dd以上数据代入公式得: 30.51(2 1.8 14325 2.25/0.3 601.25)2.5 189.8522HMPa所以,从而齿数为 32 的齿轮满足接触疲劳强度。同理对齿数11540HHMPa为 50 的齿轮代入数据得: 30.52(2 1.8 17906 2.25/0.25 801.25)2.5 189.8451.8HMPa所以,从而齿数为 40 的齿轮满足要求。 22522.5HHMPa 按齿根弯曲强度校核 由机械设计公式: ,式中,Ysa 为载荷作用于齿/FtFaSaFKFY Ybm顶时的应力校正系数 Yfa 为齿行系数,齿宽系数将和1/db d112/tFTd毕业设计说明书 17代入上式得: 11/mdZ 321212/FFaSaFKTY Ym Z其中:T1 为齿轮传递的扭矩,单位 N.mm,m 为齿轮的模数,Z1 为齿数。对齿数为 32和 40 的配合齿轮: (1) 由图 10-20c 查得大齿轮和小齿轮的弯曲疲劳强度分别为: 12500,380FEFEMPaMPa (2) 由图 10-18 查得弯曲疲劳寿命系数:120.85,0.88FNFNKK (3) 计算弯曲疲劳需用应力,取弯曲疲劳安全系数 S=1.4,由式 10-12 查得: 111222/303.57/238.86FFNFEFFNFEKSMPaKSMPa (4) 计算载荷系数 K ,其中,为齿间载荷分配系数,为齿向载荷分配系AvFFKK K KKFKFK数,查机械设计手册和机械设计得:=1,=1.12,=1.2,=1.35,所AKvKFKFK以: 1 1.12 1.2 1.351.184K (5) 查齿形系由机械设计表 10-5 得: Z2425262728FY2.652.622.602.572.55SY1.581.591.5951.601.61Z3035364550FY2.522.452.442.352.32SY1.6251.651.661.681.70查得齿数为 32 和 40 的齿轮对应的齿形系数分别为:2.52,2.40 (6) 查应力校正系数毕业设计说明书 18 由表 10-5得,齿数为 32 和 40 的齿轮对应的应力校正系数分别为1.625,1.67 由 知齿数分别为 18 和 38 的齿轮传递的扭矩分别为26344N.m,32930N.m,将以上数据代入公式:,得:32112/FFaSadKTY Ym Z =2 1.814 26344 1.625 2.52/(0.3 8)=181.2MPa1F 230 =303.57Mpa1F1F =2 1.814 32930 2.40 1.67/(0.25 8)=149.6Mpa2F 240 =238.6Mpa2F2F 所以,齿数为 30 和 40 的齿轮满足弯曲疲劳强度。.2 横向传动系数计算横向传动系数计算 齿轮的计算 传动比 0.75 5252.08360360 0.00512Si 118Z 238Z m=3mm b=20mm =20。 =54mm =114mm1d2d 158admm2118admm 149fdmm2109fdmm 按齿面接触硬度校核 (1) 由机械设计手册公式: 1(1)tHHEHKFZ Zbd 将、代入上式得:112tTFd1dbd132(1)HHEHdKTZ Zb毕业设计说明书 19 式中:齿轮传递的转矩,单位为 N.mm.1T 齿轮的分度圆直径,单位为 N.mm1d 为齿宽系数,计算公式为,式中 b 为齿轮宽度,单位为 mm,d1dbd k载荷系数,AvHHKK K KK 由机械设计手册,使用系数AK 由表选使用系数 1.00 同理可得:,所以:1.4,1.2,1.1vHHKKK =1.81 1.4 1.2 1.1K (2)分别为区域系数(标准直齿轮取 2.5) ,弹性影响系数。由机械设计HEZ Z手册表 106 知齿轮材料为段钢时,弹性影响系数取 189.8。 (3) 由机械设计图册 10-21d 按齿面硬度查的小齿轮的接触疲劳强度极限为600Mpa;大齿轮的接触疲劳强度极限为 550Mpa。 (4) 由图 10-19 接触疲劳寿命系数:120.9,0.95HNHNKK (5)计算接触疲劳许用压力,取失效概率为 1%,安全系数 S=1,由式 10-21 得: 11lim122lim2/0.9 600540/0.9 550522HHNHHHNHKSMPaMPaKSMPaMPa (6) 校核 对于齿数 18 与齿数为 38 的齿轮配合: 小齿轮传的扭矩:,为电机功率单位为 Kw,n1 为扭矩。16119.55 10/TP n1P由已知条件原机床的进给电机功率为 3KW,计算得: 619.55 103/200014325TN m则大齿轮传递的扭矩为:14325 38/1830241N m为配合齿轮的齿数比:,齿宽系数将以2.11220/540.4,20/1140.2dd上数据代入公式得:毕业设计说明书 20 30.51(2 1.8 14325 3.1/0.4 542.1)2.5 189.8521.7HMPa所以,从而齿数为 18 的齿轮满足接触疲劳强度。同理对齿数11540HHMPa为 50 的齿轮代入数据得: 30.52(2 1.8 30241 3.1/0.2 1142.1)2.5 189.8349.4HMPa所以,从而齿数为 38 的齿轮满足要求。 22522.5HHMPa 按齿根弯曲强度校核 由机械设计公式: ,式中,Ysa 为载荷作用于齿/FtFaSaFKFY Ybm顶时的应力校正系数 Yfa 为齿行系数,齿宽系数将和1/db d112/tFTd代入上式得: 11/mdZ 321212/FFaSaFKTY Ym Z其中:T1 为齿轮传递的扭矩,单位 N.mm,m 为齿轮的模数,Z1 为齿数。对齿数为 18和 38 的配合齿轮: (1) 由图 10-20c 查得大齿轮和小齿轮的弯曲疲劳强度分别为: 12500,380FEFEMPaMPa (2) 由图 10-18 查得弯曲疲劳寿命系数:120.85,0.88FNFNKK (3) 计算弯曲疲劳需用应力,取弯曲疲劳安全系数 S=1.4,由式 10-12 查得: 111222/303.57/238.86FFNFEFFNFEKSMPaKSMPa (4) 计算载荷系数 K ,其中,为齿间载荷分配系数,为齿向载荷分配系AvFFKK K KKFKFK数,查机械设计手册和机械设计得:=1,=1.12,=1.2,=1.35,所AKvKFKFK以: 1 1.12 1.2 1.351.184K (5) 查齿形系由机械设计表 10-5 得:毕业设计说明书 21查得齿数为 18 和 38 的齿轮对应的齿形系数分别为 2.91,2.40 (6) 查应力校正系数 由表 10-5 得,齿数为 18 和 38 的齿轮对应的应力校正系数分别为1.53,1.67 由 知齿数分别为 18 和 38 的齿轮传递的扭矩分别为10232N.m,21600N.m,将以上数据代入公式:,得:32112/FFaSadKTY Ym Z =2 1.814 10232 1.53 2.91/(0.4 27)=47.2MPa1F218 =303.57Mpa1F1F =2 1.814 21600 2.40 1.67/(0.2 27)=40.3Mpa2F238 =238.6Mpa2F2F 所以,齿数为 18 和 38 的齿轮满足弯曲疲劳强度。2.72.7 步进电机的计算步进电机的计算.1 纵向进给步进电机的计算纵向进给步进电机的计算 转动惯量的计算 工作台质量转换到电机轴上的转动惯量 221180180 0.001()800.4683.14 0.75JMkgcm 丝杠的转动惯量 444427.8 107.8 103.2140.311.475sJD Lkgcm 齿轮的转动惯量 44217.8 106.422.617ZJkgcm 44227.8 10826.39ZJkgcm 电动机转动惯量很小可忽略,总的转动惯量 J=21121()sZZJJJJi =221(11.4756.39)2.6170.468)14.5181.25kgcm毕业设计说明书 所需转动力矩计算 快速空载启动时所需力矩maxafoMMMM 最大切削负载时所需力矩atfotMMMMM 快进给时所需力矩foMMM式中: 空载启动时折算到电机轴上的加速度力矩;maxaM 折算到电机轴上的摩擦力矩;fM 切削时折算到电机上的加速度力矩;atM折算到电机轴上的切削负载力矩。tM 4109.6aJnMT 当 n=时,maxnaM maxaM maxmax2000 1.25416.7 /min6VinrS 4max14.518 416.7102.5225.729.6 0.025MN mkgf cm 当 n=, tnaM atM tn1000 100 0.3 1.2524.88 /min3.14 80 6nfirs =atM414.518 24.88100.15051.5369.6 0.025N mkgf cm 022fF Sf WSMii 当=0.8,=0.1 时,f毕业设计说明书 230.16 80 0.61.2332 3.14 0.8 1.25fMkgf cm20(1)2xoF SMi 当=0.9 时,预加载荷=,则0oP13xF 22028.64 0.6 (1 0.9 )(1)0.17366 3.14 0.8 1.25xoF SMkgf cmi28.64 0.62.73622 3.14 0.8 1.25xtF SMi 所以,快速空载所需力矩 M=+maxaMfMoM =25.72+1.223+0.173 =27.116kgf cm 切削所需力矩 M=+atMfMoMtM =1.536+1.223+0.173+2.736 =5.668kgf cm 快速进给时所需力矩 M=+=1.223+0.173=1.396fMoMkgf cm 从以上数据分析,所需最大力矩发生在快速启动时。maxaM 步进电机最高工作频率 maxmax20003333.36060 0.01VfHz 步进电机的选择 对于工作方式的三相六拍得步进电机 maxmax660.866MTkgf cm毕业设计说明书 24 查表选用 110BF003 型直流步进电机,其最大静转距是 800=81.6,N cmkgf cm其启动距频率特性如图 4所示。 从图中可以看到该电机在 3333.3Hz 下启动远达不到所需要的转距27.1,所以采用高低压放电路,并在程序设计中有速度控制子程序,以免发kgf cm生失步现象。 其运行特性如图 5所示。 020040060080010001200 1400 1600f(Hz)98196.1294.2392.3图40200040006000f(Hz)98196.1245.5图.2 横向进给步进电机的计算横向进给步进电机的计算 转动惯量的计算 工作台质量转换到电机轴上的转动惯量221180180 0.0005()300.04393.14 0.75JMkgcm 丝杠的转动惯量444427.8 107.8 102.561.51.874sJD Lkgcm 齿轮的转动惯量44217.8 105.431.99ZJkgcm 44227.8 1011.4339.522ZJkgcm 毕业设计说明书 25 电动机转动惯量很小可忽略,总的转动惯量 J=21121()sZZJJJJi =22212(1.87439.522) 1.990.043913.013825kgcm 所需转动力矩计算 快速空载启动时所需力矩maxafoMMMM 最大切削负载时所需力矩atfotMMMMM 快进给时所需力矩foMMM式中: 空载启动时折算到电机轴上的加速度力矩;maxaM 折算到电机轴上的摩擦力矩;fM 切削时折算到电机上的加速度力矩;atM折算到电机轴上的切削负载力矩。tM4109.6aJnMT 当 n=时,maxnaM maxaMmaxmax1000 2.1420 /min5VinrS4max13.0138 420102.2822.349.6 0.025aMN mkgf cm 当 n=, tnaM atM tn1000 100 0.15 2.125.08 /min3.14 80 5nfirs毕业设计说明书 26 =atM413.0138 25.08100.1361.3339.6 0.025N mkgf cm 022fF Sf WSMii 0.2 30 0.5 120.2872 3.14 0.8 25fMkgf cm 20(1)2xoF SMi 当=0.9 时,预加载荷=,则0oP13xF 22014.32 0.5 (1 0.9 ) 12(1)0.04366 3.14 0.8 25xoF SMkgf cmi14.32 0.5 120.68422 3.14 0.8 25xtF SMkgf cmi 所以,快速空载所需力矩 M=+maxaMfMoM =22.34+0.287+0.043 =22.67kgf cm 切削所需力矩 M=+atMfMoMtM =1.333+0.287+0.043+0.684 =2.347kgf cm 快速进给时所需力矩 M=+=0.287+0.043=0.33fMoMkgf cm 从以上数据分析,所需最大力矩发生在快速启动时。maxaM 步进电机最高工作频率maxmax20003333.36060 0.01VfHz毕业设计说明书 2 步进电机的选择 对于工作方式的三相六拍得步进电机maxmax22.726.20.8660.866MTkgf cm 仍然选用 110BF003 型直流步进电机,采用高低压放电路,并在程序设计中有速度控制子程序,以免发生失步现象。毕业设计说明书 28第第 3 3 章章 控制部分设计计算控制部分设计计算设计图纸中的第四张给出了 8031 单片机组成的控制系统。车床的纵向、横向都采用步进电机开环控制。3.13.1 控制系统的功能控制系统的功能(1)X 向、Y 向的进给伺服运动(2)键盘显示(3)棉板管理(4)行程管理(5)其他功能,例如光电隔离电路、功率放大电路、红绿灯显示。3.23.2 CPUCPU 和存储器和存储器CPU 采用 8031 芯片内部具有 128 字节数据存储器 RAM,内部编址为 000H7FH,用作工作寄存器、堆栈、软件标志和数据缓冲器。CPU 对内部 RAM 有丰富的操作指令。但仅用片内 RAM 往往不够,现外接 6264 芯片来扩展 8031 的 RAM 存储器,8031的输入、输出线不多,不能满足设计要求,所以外接 8255A 芯片以扩展 I/O 口。由于 8031 无 ROM,它不能构成完整的计算机系统,必须外接 EPROM 或 ROM 作为程序存储器,因此,外接两片 2764 芯便。8031 是标准的 40 引脚双列直插式集成电路芯便,共四个 8 位的 I/O 接口,以实现数据的并行输入输出。设计图中的对应,对应01,23(,)pp pp3.0pRxD3.2P,对应,对应,0INT3.3P1INT3.4P0T串行断口接收接入,RxD串行断口发出输送,TxD外部中断 0 申请,0INT外部中断 1 申请,1INT外部程序存储器的读选通信号,PSEN访问程序存储器的控制信号:高表示 ROM 的读写操作从内部存储器开始EA毕业设计说明书 29并延续到外部存储器,低表示对 ROM 的读写操作只限于外部存储器。口和口0,p2p作为地址线,口传送高八位地址,口传送第八位地址和数据,故采用 74LS3732p0p地址锁存器,锁存低八位的地址,ALE 作为其选通信号,当 ALE 为高电平,锁存器的输入输出透明,即输入的低八位存储器地址在输出端出现,此时不锁存。当 ALE从高电平变为地电平,出现下降延时,低八位地址锁入地址锁存器中,74LS373 芯片的输出不再随输入变化,这样就可以传送读写的数据了。8031 芯片的口和0,p2p74LS373 送出的共组成 16 为地址,6264 和 2764 都是 8KB,需要 13 跟地址线。0p底 8 位接 74LS373 芯片的输出,接 8031系统采用全地址译07AA812AA2.02.4pp码,两片 2764 芯片的片选信号分别接 74LS138 的和,系统复位以后工 0000H0Y1Y开始执行。6264 芯片的片选信号也接 74LS3138 的,单片机扩展系统允许程1CE1Y序存储器和数据存储器独立编址(即允许地址重叠) ,8031 芯片控制信号接PSEN2764 的引脚,读写控制信号和分别接 6264 芯片的,以实现外部OEWRRDWRRD数据的读写。由于 8031 芯片内部没有 ROM 故要选外部存储器,故其必须接地。EA3.33.3 时钟电路时钟电路时钟电路用于产生单片机工作所需的信号,而需研究的是指令执行中各信号之间的相互关系。单片机本身就相当于一个复杂的时序电路,为了保证同步工作方式的实现,电路应在唯一的时钟信号控制作用下严格按照时序工作。设计图中 8031 芯片内部有一个高增益反向放大器,起输入端为引脚,其输出端为引脚。1XTAL2XTAL而在芯片的外部,和之间跨接晶体震荡器和微调电容,从而构成一个1XTAL2XTAL稳定的自激振荡器,这就是单片机的时钟电路。一般电容,30Vpf 左右。晶体1C2C振荡频率范围是 1.2MHZ12MHZ。如果晶体的振荡频率高,则系统的时钟频率也高。单片机的时钟频率也高,单片机的运行速度就快。但反过来运行速度快对存储器的要求也高,对应持续 24 个振荡脉冲周期(即两个机器周期)以上,对于使用频率为6MHZ 的晶振,则复位信号持续应超过 4us 才能完成复位操作。复位操作方式有上电自动复位和手动复位两种方式。我采用的是按键手动复位的方式,它又包括电平方毕业设计说明书 30式和脉冲方式两种,其中按键电平复位方式是通过是复位端经电阻与 VCC 电源接通而实现的,其电路如下图(a)所示。而按键脉冲方式则是利用 RC 微分电路产生的正脉冲来实现的,其电路如下图(b) 。我选用的按键电平复位方式,图中电容参数适用于 6MHZ 晶振,能保证复位信号高电平持续时间大于两个机器周期。3.43.4 复位方式复位方式复位是单片机的初始化操作,其主要功能是把 PC 初始化为 000H,使单片机从00H 单元开始执行程序。除了使系统初始化外,当由于程序运行出错或者操作错误是系统处于锁死状态时,为了摆脱困境也需要按复位键。REST 引脚是复位键的输入端,复位信号是高电平有效,有效时间持续 24 个振荡脉冲周期(即两个机器周期)以上,对于使用频率为 6MHZ 的晶振,则复位则复位信号持续应超过 4us 才能完成复位操作。复位操作方式有上电自动复位和手动复位两种方式。我采用的是按键手动复位的方式,它又包括电平方式和脉冲方式两种,其中按键电平复位方式是通过是复位端经电阻与 VCC 电源接通而实现的。而按键脉冲方式则是利用 RC 微分电路产生的正脉冲来实现的。我选用的按键电平复位方式,图中电容参数适用于 6MHZ 晶振,能保证复位信号高电平持续时间大于两个机器周期。3.53.5 I/OI/O 接口电路接口电路由于 8031 只有 P1 口和 P3 口部分能提供用户作为 I/O 口使用,不能满足输入和输出口的需求,因而系统必须扩展输入输出口接口电路。设计图中,系统扩展了一片 8255(带 RAM 和定时器/计数器的可编程并行接口芯片)和一片 8255(可编程通用并行接口芯片) 。8155 的片选信号接 74LS138 的端,8255A 的片选信号CE0Y接到 74LS138 的端。74LS138 翼码器有三个输入 A、B、C 分别接到 8031 的CS2Y , ,输出为,低电平有效。对应输入 000111 等 8 种2.5p2.6p2.7p07YY07YY组合,其中对应 A、B、C 的 000,对应 111。74LS138 有个使能端,其中0Y7Y为低电平使能,另一个为高电平使能。只有当使能端均处于有效电平22G AG B和1G时,输出在能产生,否则输出处于高电平无效状态。I/O 接口芯片与外设的连接是这样安排的:8155 的 PA0PA7 作为显示器的段选信号,PB0PB7 作为显示器的位选信号,PC0PC4 作为键盘扫描输入。行扫描法的基毕业设计说明书 31本原理是:使一条列线为低电平,如果这条列线上没有闭和键,则各行线的状态都为高电平;如果这条列线上有闭和键,则相应的那条行线的状态变为低电平。这样就可以根据行线和列线号求得闭和键的键码。行扫描的过程:是先是输出口输出FEH,然后输入行线状态,判断行线状态是否有低电平。如果没有低电平,则再使输出口输出 FDH,再判断行线状态,依次输入、判断,行线中有状态为低时,则闭和键找到。至此,行扫描似乎可以结束,但是,扫描往往继续进行下去,以排除可能出现的多键同时被按下的现象。AD0AD7 是数据地址符合线,之所以能与 P0 口直接相连,而不需要地址锁存,是由于 8155 内部已有锁存器,可以进行地址锁存,因此连接是不须再加锁存器。8155 与 8031 中没有相应的信号。在采用以高位地址直接作为信号上,因为/IO M是 8155 特有的信号,8031 中没有相应的信号。在此采用以高位地址直接作/IO M为,所以 P2.0 接。/IO M/IO M8255A 芯片 PA0PA6 接 X 向、Y 向步进电机硬件环行分配器,作为输出,PB0PB5 位两个方向的点动及回零输入。PC0PC5 为面板上的选择开关,设有编辑、单步运行、单段运行、自动、手动 1、手动 2 等方式。A0、A1 为端口选择信号,四个可寻址的端口(A、B、C 和控制寄存器) ,用两位地址编码即可实现选择。在 I/O扩展连接时应把 A0 和 A1 直接与单片机的 P0.0 和 P0.1 相连。系统各芯片采用全地址译码,各存储器及 I/O 接口芯片的地址编码如下所示:芯片接引脚74LS138片内地址单元(B)地址编码2764(1)0Y8K0000H1FFFH2764(2)1Y8K20003FFFH62641Y8K2000H3FFFH81554Y2569E00H9EFFH81554Y69FF8H9FFDH82552Y45FFCH5FFFH毕业设计说明书 323.63.6 电隔离器的功放回路设计电隔离器的功放回路设计.1 驱动回路的时间常数驱动回路的时间常数 纵向和横向进给都选用 110BF003 步进电机,差得相电流=6A,电压=80v L=0.0355H,Rm=0.37u 步进电机以三项六拍工作方式 Ti=L/Rm=0.0355/0.37=95.9ms 因此11/9001.1iezTmsf.2 时间常数为;时间常数为; 若选用串联电阻法改善电流上升沿, Ti2=L/(Rm+Ro) =1.1ms 则 Ro= =31.9 330.035 1.1*0.37*1031.1*10 在串联电阻 Ro=3.19O 后会消耗一部分功率将其转换成热能会给设备散热带来困难,也降低了功率放大器的功率,因此 Ro 一般不超过 10u 为宜,所以采用双电源电路。.3 高压电源的确定高压电源的确定 电机每向五拍改变一次通电状态,则控制脉冲 2/3 宽度的时间为高压电源工作时间,即单稳反转时间,其值为:0.73ms23ezTbf而,得;Im1TbEheRm=122vIm1TbRmEhe.4 元器件的确定元器件的确定 为了使电路简单、紧凑、功率放大级的 T1 和 T2 选用复合管,其性能23YZ F如下:毕业设计说明书 33CBDBU(V)CEDBU(V)BEDBU(V)CEOI(mA)CESU(V)20080322.0BEU(V)FEh(倍)cmI(A)cmP(w)jT()C2.5300050001050150注:在管绿色标时。FEh23YZ F硅整流管,选用,主要参数如下:1D2D132cZ A反向电流()RImA额定工作电压( )FMUv额定工作电流()FImA正向电压降( )fUv20C125C 100 50000.81 确定,5R6R从 T1 和 T2 性能数据知取=20.5v,而步进电机相电流 In=6ABEU2.5BEU,基极电流:取=40001nBFEIIhFEh则=6/4000=1.5(ma)1BI等效输入电阻为:=1BETBEURI 10k选光点隔离器的输入电流为:=10mA,插得电流传输比=30%,所以iITRC=3mA5iTRII C,=561BIII56II BEU=-,=80V55II nEBEUnE=1.5mA6I毕业设计说明书 34=25.85Rk=1.76Rk 确定 R1 R2因为=10mA,查得光电隔离器的输入端的正向压降为 1.3V,则:iI=3701R45 1.310 .确定34,R R负载的平均阻抗为:=13.3nnEZI806T2 的饱和电流:=6.92mA2hncescsEEUIZ176802 213.3 而,=6.92/4000=1.73mA,又:(2)2csBFEIIh =342BIII3IiTRIC0 点的电压为:=144522BFTBURI32.51.73 10=196944BFBURI32.51.27 10=13k033HcesEUURI3176 13523 确定7R 为提供给单稳定态和驱动门足够的输入电流(各 10mA) ,所以=5/=5009RiI3510 10毕业设计说明书 3 单稳态多谐振荡器 74221 翻转时间的确定振荡器的“消除”端加高电平,A 端加低电平时,B 端跃变可是单稳的 Q 端CLR从低电平变为高电平,经一段时间自动翻转为低电平,恢复到稳定状态。Q 端输出一个脉冲,脉冲宽度由外接电阻和确定。TRxC脉冲宽度 t=cln2,所以,c=t/ln2,取=10k,则:TRC=0.048uF340.33 10102Ln74221 为双单稳态多谐震荡器,一块 74221 可供步进惦记两向工作,所以相电机需两片 74221毕业设计说明书 36参考文献参考文献1.北京有色冶金设计研究总院.机械设计手册,北京:化学工业出版社出版,1994,355-341.2.华东纺织学院,哈尔滨工业大学,天津大学.机床设计图册,上海科学出版社出版,1991,211-231. 3.孟少农.机械加工工艺手册,机械工业出版社出版,1991,3-231. 4.陈经斗,许镇等编.机械制图,天津:天津大学出版社出版,1998,2-233. 5.濮良贵,纪明刚.机械设计,北京:高等教育出版社出版,2003,3-231. 6.赵如福.金属机械加工工艺人员手册,上海:上海科学技术出版社出版,1990,322-344. 7.毕承恩,丁乃建.数控机床,北京:机械工业出版社出版,1991,5-211. 8.周佩玲,吴耿锋等.16 位微型计算机原理接口及应用,安徽合肥:中国科学技术大学出版社出版,2003,12-243. 9.杨志强,刘会英.机械原理,北京:机械工业出版社出版,2003-58-236. 10.张新义.经济型数控机床系统设计,北京:机械工业出版社出版,1993,56-78. 11 杨友军.数字控制技术与数控机床,北京:机械工业出版社出版,2003,12-34. 12.姜培刚,盖玉先.机电一体化系统设计,北京:机械工业出版社出版,2003,23-45. 13.丁志刚.直线步进电机的原理控制与应用,北京:机械工业出版社出版,1994,14-67.14.刘振昌.机械工程英语,北京:机械工业出版社出版,2004,1-67.15Haffman EG Jigs and Fixture Design America, VNRCo,1980.16.Boyes WE Jig and Fixture Design America,SME,1982.毕业设计说明书 37致谢致谢大学四年的时间转眼间就接近尾声了,在这最后的接近四个月的时间里进行的毕业设计使我对这四年来所学的知识有了一个全面的总结,对今后自己要进行的工作有了一个初步的了解。在这次设计中,主要运用了机械设计、机械原理、液压传动、互换性与技术测量、金属材料及其热处理、金属工艺学、理论和材料力、画法几何学等方面的知识,运用这些知识完成了零部件的设计、计算、校核,作图。在设计之初面对各种凌乱资料的时候,我的大脑一片空白,四年来所学的知识由于长期的搁浅早已遗忘在了脑后,不知从何入手。到莱阳动力汽车厂进行参观实习之后,对自己要设计的题目有了整体上的认识。在具体的设计计算过程中,我对以前所学的有关课程进行了整体的复习,查阅了大量相关的资料。设计过程中遇到各种各样的困难是难免的,解决这些困难的过程是既痛苦又快乐的。当最初的困惑与问题都倒在自己脚下时,心中感到了无比的快乐。在本次设计中,我得到了指导老师老师,老师和制造有限公司高级工程师的指导。在这里我非常感谢老师对我的指导和教育。同时作为设计组的一员,我得到了同组同学的大力帮助。没有我们之间的交流和鼓励,毕业设计是无法完成的。其间我感受到了团队合作精神的伟大,这将作为我一生的财富运用到今后的工作学习中去!毕业设计说明书 38附件附件附件1:外文资料附件2:中文翻译毕业设计说明书 39附件一:英文资料附件一:英文资料Process capability requirement undermaximum material conditionS C Diplaris* and M M SfantsikopoulosSchool of Mechanical Engineering, National Technical University of Athens, Athens, GreeceThe manuscript was received on 19 May 2004 and was accepted after revision for publication on 12 June 2006.DOI: 10.1243/09544054B08604Abstract: A frequently used geometrical tolerance is the position tolerance. When it is assigned at the maximum material condition (MMC), an increase in the position tolerance is allowed, equal to the departure of the particular feature from the maximum material condition size.Neither concept position tolerance and maximum material condition analytically related with the exact coordinate dimensions that locate the feature. A feature position is usually allocated on the basis of its theoretically exact co-ordinate dimensions, whereas positional accuracy is pursued through an appropriate planning of the machining process inconjunction with appropriate machine tool(s) and/or jig(s). Exploitation of the MMC tolerance bonus is taken into account mainly during part inspection in order to reduce rejects. Such an approach is not systematic, considering that the MMC benefits are not taken directly into account in the process planning stage in order to control the overall process cost.In this paper, the permitted manufacturing errors of a feature size and position are considered and studied simultaneously in an analytical way. It is shown that a 毕业设计说明书 40lower process capability (PC) requirement can then be established that leads to a significant process cost reduction. An application example demonstrates the use of the method and the obtained results are discussed.Keywords: geometrical tolerancing, position tolerance, process capability, machining cost1 INTRODUCTIONThe required manufacturing accuracy for a mechan-ical component is specified by means of a combina-tion of dimensional and geometrical tolerances. Tighter tolerances generally contribute to better product quality, while they also contribute to an exponential increase of the manufacturing cost.Geometrical tolerances are complementary to the dimensional ones and for most applications ease part manufacturing and inspection 15. An impor-tant and frequently used geometrical tolerance is the position tolerance. Position tolerance is the total permissible variation in the location of a feature from its true position. The term true position describes the exact location of a feature point, axis, or plane (normally the centre) of a feature in relation to a datum reference or other feature. For cylindrical features, such as holes or bosses, the positional tolerance zone is a cylinder through the depth/length of the feature within which the axis of the feature must lie. For other features, such as slots or tabs, the position tolerance zone is the total width between two parallel planes through the depth/length of the feature within which the centre plane of the feature must lie. In engineering draw-ings, the position tolerance of a feature is denoted with the size of the diameter of the cylindrical toler-ance zone (or the distance between the parallel planes of the tolerance zone) in conjunction with the theoretically exact dimensions that determine the true position 24. It can be shown easily that a position tolerance increases the area inside which the axis of an, e.g. rotational feature must lie by t 57 per cent, against the available area through conventional coordinate tolerancing. Assignment of position tolerances reduces in this way the number of rejects without affecting the product quality. In multiple-hole assemblies, position 毕业设计说明书 41tolerances fre-quently replace coordinate tolerances 2, 3.Position tolerances are particularly helpful when they are assigned at the maximum material condi-tion (MMC). At MMC, an increase in position toler-ance is allowed, equal to the departure of the feature from the maximum material condition size,2, 3, 5, 6.Consequently, a feature with size beyond maximum material, but within the dimensional tolerance zone and its axis lying inside the enlarged MMC cylinder, is acceptable. The accuracy required by a position tolerance is thus relaxed and the reject rate reduced. Neither concept position tolerance and MMC analytically related with the exact coordinate dimen-sions that locate the feature true position in the engineering drawings.In process planning, however,a feature position is usually located on the basis of the theoretically exact coordinate dimensions,whereas the required positional accuracy is pursued through an appropriate machining process in con-junction with appropriate machine tool(s).Exploita-tion of the MMC tolerance bonus is taken into account mainly at a laterstageduring part inspec-tion in order to reduce rejects 2, 3, 7, 8. If the capability ofthe process proves to be far above the ground, adjustments can then be made for its relaxa-tion and hence the reduction of its cost. Such an approach is obviously not systematic, given that the MMC benefits are not taken directly into account in the process planning stage in order to optimize the overall process cost. In the following sections, the permitted manufac-turing errors under MMC of a feature size and posi-tion are considered and studied simultaneously. It is shown analytically that a lower than the currently applied process capability requirement can then be calculated and used early when planning the pro-cess. Significant production cost reduction can thus be achieved.The induced gain can be even greater when feature patterns with composite position toler-ances exist, a case that is met in many mechanical components. An application example demonstrates the use of the method and the obtained results are discussed.毕业设计说明书 422 THEORETICAL ANALYSISWhen coordinate dimensioning is used (Fig. 1(a) the position of a feature (e.g. hole) should lie within the rectangular area whose size is determined by the coordinate dimensional tolerances (Fig. 2). If a position tolerance is used instead (Fig. 1(b) then the axis of symmetry of the feature should lie inside the circle circumscribed about this rectangular. As has been already mentioned, the resulting 57 per cent increase of the available area does not affect the required accuracy. An additional tolerance relaxation can be achieved further by the MMC tolerance bonus (Fig. 2).Assume that a cylindrical hole with diameter , theoretically exact 0dDtcoordinate dimensions of its axis centre X, Y and a geomet(i.e. diameter of the tolerance cylinder cross-section) tp referenced to the datums A, B, and C has to be pro-duced at the maximum material condition (Fig. 3(a). The statistical quantity of the parts can be consid-ered as sufficiently large. It is clear in this case that the objective of the tolerance specification is to con-trol the size of a cylindrical peg (control peg), which will be able to pass through the hole and will have its axis centred at the X, Y point. For such a produced hole with diameter D,where ,and axis passing through a point L not coinciding with the 00DDDtDDttheoretical centre K (Fig. 3(b) the maxi-mum diameter of this control peg will be equal tod=2(Ka)=2(1)where is the size of the hole axis deviation ()()2LALK from its true position and A the point of the contact line.It apparently holds D max and alsomaxmin/20ptandmaxmaxmin002()0(2)DDdDDtDt minminmax02(3)DpdDDtt maxmin00()22 (4)DDpDpdddDtDtttttwhere td is the tolerance of the control peg diameter, ddtHole diameter D and hole axis deviation from its true position are variables 毕业设计说明书 43that both depend on anumber of parameters, including those related to the machine tool accuracy, fixtures, tools, machining process and conditions, etc. Industrial practice has shown that D and D are satisfactorily represented by the normal distribution 9. The same obviouslyapplies for d. The standard deviations of D, and d should in general result in satisfactory process capability indices. The ratio of the process capability (CP) index is here 10, 11, /(5)CPTwhere T is the designated tolerance and s the standard deviation of the normal distribution of the measured dimensional or geometrical characteristic. The acceptance rate for CP 1 is 99.73 per cent, whereas for CP 1.33, it is raised to 99.99 per cent 3, 10.The process capabilities of the set-up under consideration can be written asmaxmin2/6,2/6()/6/12 (6)DdDpCPtCPtt where t is the feature axis deviation tolerance, 。 It can now be taken into tconsideration that, depending on the process plan and the equipment and tooling to be used, an interdependency between the D and D accuracies takes place to some extent, as any effort to keep the size D within its limits may also affect the size D .Ifr is their correlation coefficient, the standard deviation of the size d, given by equa-tion(1), will then be equal to 12and the corresponding CPd 22244(7)dDD for the diameter d,or, 221/2maxmin2/6()/644(8)dddDDCPtdd because of the relationshipsofequations(4)and(6)A CPD that results 22221/22/6/94/1444/36(9)dDpDDpD pDCPtttCPtCPt tCP CPin negligible rejections constitutes for the tolerance of the hole diameter D a rigid requirement (e.g. CPD 1.33). A position tolerance may or may not be assigned, on the other hand, at the MMC of the hole size. Without MMC, hole size and position deviations are verifiedseparately so that, clearly, CP represents an equally rigid requirement as that for CPD . In such a case, for毕业设计说明书 44,= , equation (9) leads to .DCPCPDCPCP With MMC assigned to the hole size, the acceptable hole position deviation is relaxed as it is, in this case, verified in terms of the position tolerance tp in conjunction with the actually achieved hole size. CPd consequently, can be, eased to a lower level than that without an MMC assignment and set=(10)From equations (9) and (10), a new processDCPdCPcapability requirement CP D is obtained thus(11)The lower process capability CP221/224()4141DDDPPPDPttttttttrequirement above, for the hole position deviation under MMC, has in addition CPto comply with the inspection con-straint that is in any way applicableD max或者(12)In Fig. 4, the variation of 2max262PDttCP12(2)1pDPDPttttt as a function of the tolerance ratio tD /tp , equation (11), is diagram-matically CPshown for and different values of the correlation coefficient r. In the same CPdiagram, the CP 0 constraint of the relationship with equation (12) is also shown. The following comments can now be made.1. For tolerance ratios 11, usual in most applications, reduction of the DPttrequired processcapability can reach up to 75 per cent, i.e. 0.333. Without MMC, the reject CPrate will be the same, only with =1.33.CP2. For 0.2, and any correlation coefficient between D and D , the inspection DPtt毕业设计说明书 45constraint for equation (12) does not play any role.3. Equation (11) is a diminishing function of the (D, ) correlation coefficient r. When a geometri-cal position tolerance is assigned at MMC, a process plan that will increase will consequen-tly contribute to process cost reduction by red-ucing the requirement. As Fig. 4 suggests,where the ratio 0.2 there is, CPDPttnonetheless,an upper limit for the increase (approximat-ely0.70) owing to the inspection constraint forequation (12).4. The limits quoted above for tD /tp and havebeen obtained by assuming . CPDifferentlimits would be obtained for other CPD values.The use of the relationships of equations (10) to (12) is demonstrated and discussed in the applicationexample that follows.3 APPLICATION EXAMPLE AND DISCUSSIONIn Fig. 5, the engineering drawing of a workpiece with two patterns of 4 and 2 5 holes is shown.The composite position tolerance frame that con-trols the position accuracy of the four holes pattern with reference to the A, B, C datums is only here,for the paper economy, discussed. The diameter ofeach of these holes is 100.12mm.The position tolerance for the hole pattern is =1.20mm and that 1ptbetween the holes themselves =0.36mm. Both these geometrical position 2pttolerances are assigned at the MMC.In accordance with the preceding analysis, processtooling accuracy requirements eased without increase of rejects rate) can be based on the new, lower process capability requirement, obtainable from equation (11) for both CPpattern and hole positioning. The diagrams of Fig. 6 for (hole pattern) and 1CP (hole) have been pro-duced assuming CPD=1.33 and various rvalues. 2CP毕业设计说明书 46Similarly, from equation (12), Fig. 6 are also given the calculated, minimum permitted and values. From these diagrams, it is clear that process 1CP2CPcapability for the hole pattern allocation can in this way be reduced considerably, i.e., the permitted standard deviation increased, up to approximately 29 per cent (for=1=0.95) =0.95 hence improve-ment per 1CP2CP(1.330.95) 10028.571.33cent).For the holes allocation the process capability requirement can be reduced up to 55 per cent respectively (the same as for the pattern allocation =1.00=0.60, or (1.330.60) 100/1.33=54.88 per cent).2CP4 CONCLUSIONSMMC is used to relax geometrical accuracy require-ments and reduce rejects, mainly during inspection.It is taken into account indirectly when planning a machining process. However, MMC benefits for lower process cost cannot be exploited to their fullextent without the use of an analytical approach. APPENDIXThe method presented in this paper produces reduced process capability requirements for MMC-based position tolerancing. It was shown that the proposed approach can lead to considerable manu-facturing cost savings since it permits, early in the process planning stage, the analytical calculation and consequent adoption of a lower than conven-tionally applied CP for the position tolerance. With-out affecting the rejects rate, machine and process accuracy requirements are in this way relaxed greatly as is the production cost. The larger the ratio of the dimensional tolerance of the feature over its position tolerance, the larger the cost improvement. Notice that, in case the dimensional/geometrical correlation coefficient is difficult to estimate, assum-ing a very low or zero r-value, the method still leadsto process accuracy requirements relaxation.REFERENCES毕业设计说明书 471 Yeo, S. H., Ngoi, B. K. A., and Chen, H. A cost tolerance model for process sequence optimisation. Int. J. Adv. Mfg Technol., 1996, 12, 423431.2 Neumann, A. G. Geometric dimensioning and toleran-cing workbook, 1995 (Society of Manufacturing Engi-neers, Technical Consultants Inc., Florida).3 Gooldy, G. P. Dimensioning, tolerancing and gaging applied, 1999 (Prentice Hall, New Jersey).4 ISO 5458 Geometrical product specifications (GPS) Geometrical tolerance Position tolerancing, 1998,The International Organization for Standardization,Geneva.5 ASME Y 14.5M 1994 Dimensioning and tolerancing. 1994, The American Society of Mechanical Engineers,New York.6 ISO 2692 Technical drawings Geometrical toleran-cing Maximum material principle, 1988, The Interna-tional Organization for Standardization, Geneva.7 ANSI B4.4 Inspection of workpieces, 1994, The Ameri-can Society of Mechanical Engineers, New York.8 Diplaris, S. C. and Sfantsikopoulos, M. M. Maximummaterial condition in process planning. In Proceedings of the sixth Stimulating manufacturing excellence in small and medium enterprises International Confer-ence,Athens, June 2003, pp. 313322.9 Morrison, S. J. Quality engineering design. Mfg Engi-neer IEE; June 2001, 80(3), 100103.10 Kane, V. E. Process capability indices. J. Qual. Technol., 1986, 18(1), 4152.11 Pearn, W. L., Kotz, S., and Johnson, N. L. Distribu-tional and inferential properties of process capability indices. J. Qual. Technol., 1992, 24(4), 216231.12 Kennedy, J. B. and Neville, A. M. Basic statistical methods for engineers and scientists, 3rd edition, 1986 (Horper and Row, New York).13 Kaminski, J. and Crafoord, R. Position accuracy of drilled holes. Ann CIRP, 1991, 40(1), 503506.14 Kirschling, G. Qualitaetsiecherung u. Toleranzen, 1988(Springer Verlag).15 Chase, K. W. and Parkinson, A. R. A survey of research in the application of 毕业设计说明书 48tolerance analysis to the design of mechanical assemblies. Res. Engng Des., 1991, 3, 2337.16 Greenwood, W. H. and Chase, K. W. A new tolerance analysis method for designers and manufacturers.ASME, J. Eng. Ind., 1987, 109, 112116.17 Diplaris, S. C., Sfantsikppoulos, M. M., and Kopanias, G. J. Position tolerance: manufacturing cost optimization. In Proceedings of the International Conference in Manufacturing engineering (ICMEN),Halkidiki, Greece, 2002, pp. 415422.APPENDIXNotationCPd process capability index for the controlpeg diameterCPD process capability index for the hole size, process capability indices for positionCPCPdeviationd diameter of the control pegD actual hole diameterD0 nominal hole diameterP correlation coefficienttd symmetrical tolerance of control pegdiameter symmetrical tolerance of holetdiametertp position toleranceT tolerance zone size deviation from true position standard deviations,Pd 毕业设计说明书 49ELECTRO DISCHARGE MACHINING OF BORON CARBIDE INDUSTRIAL COMPONENTSABSTRACTFinal machining of ceramic components accounts in many cases for an important percentage of the final cost of the part. while diamond grinding is usually the most common solution, it shows important drmvbacks related to the impossibility of generating complex shapes. Although diamond grinding will never be completely substituted, non-conventional machining methods can provide a feasible alternative. Amongst, these methods, Electro Discharge Machining (EDM) is especially suited when the material shows an electrical conductivity over O.Ol S/cm.In this work, the development of EDM technology for B4C is presented. First, the state of the art in the machining of ceramic materials is analysed. Then, the influence of the EDM process variables on removal rate, electrode wear and surface finish is investigated. Finally, an industrial case study, concerning a precision industrial component is analysed. The major conclusion is that EDM is a feasible method for the final machining of B4C, especially if no strict requirements areimposed on the surface integrity of the component.KEY WORDS: Electro Discharge Machining, Ceramics Machining, Boron Carbide. INTRODUCTION.State of the Art on the machining of technical ceramics.in many cases, the manufacturing process of a ceramic component includes 毕业设计说明书 50some machining at thefinal stage, especially if close tolerances in complex geometries are to be achieved. At this point,properties that are required in ceramic materials (such as a very high hardness, even at very high temperatures), along with their typical brittleness become a major disadvantage. Studies 1 showthat, on occasion, the cost of machining a ceramic component is much higher than the cost of the raw material itself Even more, final machining is often responsible for damage of the surface integrity of the ceramic component, since it is difficult to machine at very high removal rates while keeping surface integrity at an acceptable level.Nowadays, two trends arc accepted in tile machining of ceramic materials:* Abrasive machining methods, amongst which grinding is the most important one, but others such as ultrasonic machining (USM) or abrasive water jet machining (AWJM) must be mentioned.* Fusion or vaporisation by using an external energy source, such as electro discharge machining (EDM), laser machining or electro chemical machining (ECM).In the following paragraphs, tile characteristics of the most commonly used methods for the machining of technical ceramics are analysed. It must be taken into account that non-mechanical methods (those of the second group) arc preferred by industry in finishing operations.GrindingGrinding with a diamond wheel is, by far, the most frequently used method for the machining oftechnical ceramics, accounting for more than 80% 1 of the total machining. Although nonconventional machining of ceramics is continuously improved, it can be stated that grinding will never be completely substituted in the production of ceramic components.Probably, the main problem regarding the grinding of technical ceramics is the lack of experiencein the use of diamond grinding wheels for these materials I. In many cases, 毕业设计说明书 51wheels are not efficient. On the other hand, the number of geometries that can be generated is clearly limited.In general, it can be said that the cost of the component depends upon the production scale. Very little information is available about the grinding parameters, and about the influence of the operation on the quality of the final component. That is why the user frequently applies a conservative approach, that leads to iow removal rates and to an increase in the final cost 1 .In the case of steel grinding, if the appropriate fluid and grinding conditions are used no damage should be expected to occur on the surface integrity. Thus, dimensional tolerances and surface finish are usually the only requirements. This is not so in the case of technical ceramics. Thesematerials are subjected to a considerable reduction in their mechanical properties as a consequence of the generation of microcracks on the surface. These defects may reach a depth of up to 25 um.Different solutions have been investigated in order to avoid grinding generated surface damage. In some cases, secondary operations (such as lapping) are used. Ion beam implantation is also used.However, the efficiency and economy of these methods is not always evident. One possible alternative is to avoid damage generation in the grinding operation itself. Using this concept,McKeown 2 proposed what is known as ductile regime grinding. This is based on keeping the removal rate constant, together with the minimisation of grinding forces, thus avoiding cract generation.The University of North Carolina carried out a wide research program on the machining of ceramics 3, in which ductile regime grinding was analysed in detail. The main disadvantage of the method is the increase in machining time. As an alternative, creep-feed grinding was proposed.In this process, depth of cut is increased and feed rate decreased. The major difference with conventional grinding is the size of the contact area, being larger in the case of the creep-feed grinding,what leads to an increase in contact forces. Even thus, wheel wear is considerably reduced and surface finish and final 毕业设计说明书 52mechanical properties of the material, improved 4.In the same work, the project PEGASUS is described. PEGASUS stands for Precision Engineering Grinding Apparatus for Superfinishing Ultrahard Surfaces 5. Tests carried out on SiC performed excellently with minimal damage on the surface integrity of the material.Yui 6 focuses this technique on the grinding of Al203, SiC and Si3N4. In his work, Yui mentions that the static stiffness of the machine has a considerable influence on the spark-off time and onthe final finish of tile surface.At the end of the 80s, the French company Norton carried out a study on the grinding of HotPressed Si3N4 (HPSN), ZrO2, Al2O3/TiC, and tungsten carbide. In that work, the need for a veryprecise movement of the table of the machine is highlighted, without vibration or backlash, as well as an adequate use of the coolant. The bonding agent and the grit size have also a significant effect. Researchers at the University of Tokyo 7 worked on the same line using a special machining centre, modified to accommodate diamond grinding wheels. Tridimensional complex shapes in Si3N4 and SiC were machined at high removal rates. Grinding time is reduced in about 10%, and wheel wear is considerably reduced. However, large quantities of coolant at high pressure arerequired. Otherwise, grinding forces and temperatures may rise to unexpected levels, leading to damages both on the workpiece and on the wheel itself.As a brief outline, most of the studies on the grinding of technical ceramics give similar recommendations in order to achieve the best surface finish and a minimum damage. The first one is the importance of an appropriate selection of abrasive material 4. The second one refers to the bonding agent used to keep the abrasive together, resinous bonding being the most commonly used in the machining of high hardness ceramics such as B4C, SiC and Si3N4. Other studies that can be found go from the analysis of the microstructure of the material to the residual stresses produced by the temperatures generated during the process.毕业设计说明书 53LaserThe use of the laser for the machining of ceramics has some advantages when compared withgrinding. There is no contact between tool and workpiece, and no abrasive material is used. Thus,there is no tool wear or force induced deflexions, vibrations disappear (so that tolerances can- bekept closer), and the geometry of components is less limited 8.However, the fact that the process is based on the fusion or vaporisation of the material when a focalised beam is applied on the workpiece may lead to severe surface damage (similar to thatinduced by EDM). Laser machining is nowadays a good alternative to electron beam machining(EBM), and it has taken its place in many applications.One typical property of technical ceramics is their low thermal conductivity, which is not a especially good property for laser machining. This means that process induced thermal stresses are very localised, giving rise to spalling, microcracks and even cracking.Some materials, such as Si3N4 do not suffer fusion, but directly go to vapour state. Nitrogen is liberated and a layer of silicon is deposited on the machined surface. Microcracks may appear inthis layer, caused by the difference in thermal coefficients. This effect can be responsible for an important weakening of the machined component.Therefore, a large number of researchers have tried to find the optimum operation parameters that ensure a component free of structural damage. Morita ct al 9 have assessed the laser machining of Si3N4 using a YAG laser along with a Q modulus, that allows the use of very short pulses (lessthan 100 ns) at a very high frequency (about I0 KHz). Under these conditions, material could be removed without any apparent sign of damage (the study of the surface revealed only the presence of Si3N4).Chryssolouris 10 gives data about laser machining of ceramic materials. Some 毕业设计说明书 54information included in his work is taken from Veseley and Firestone 11, who worked for the US Army Tank-Automotive Command (TACOM). High-speed laser machining of ceramics for their use in thermal engines was carried out, including Si3N4 (Norton NC-350) sintered by infiltration, hot pressed SiC (Norton) and partially stabilised ZrO2 (Nielson PSZ).Machining was carried out on previously heated test pieces. In the case of Si3N4, the test piece is heated at 1000C (other sources claim a previous heating at 1400C), achieving removal rates ofabout 50 mm3/s (10 times faster than those achieved with diamond grinding), without apparent damage on the material.Electro Discharge MachiningIn the EDM process, since no contact between tool and workpiece is involved, high complexity Shapes can be machined independently of the mechanical properties of the material (especially, hardness, brittleness and resistance). As a result of the lack of contact, the component will be free of mechanical residual stresses. Its high removal rate assures a wide range of applications.The only requirement is that the electrical conductivity of the workpiece material is over 0.01 S/cm 12. Again, the thermal nature of the process must be taken into account when it comes to the damages that the structure of the material may suffer during the process, in a similar way to those produced by laser machining.At the beginning of the 80s, Ajmal 13 carried out the first research on the EDM of SiC. Both a high removal rate and a good surface quality for this material were the objectives of the work. The work was continued by Noble et al 14, who showed in 1983 the first results of the EDMing ofRefel-SiC. The results showed that when using long pulses (about 1000 s) and low discharge currents (about 8-9 A) removal rates as high as 3.6 mm3/min can be obtained.The research on tile EDM of conductive ceramics has come both from tile University 12, 15,16, 17, and the industry I 8. In all tile cases, tile objective 毕业设计说明书 55has been to develop a technology for industrial application of the EDM process to these materials.Some materials that are not conductive enough have also been EDMed. Matsuo et al 19 investigated the EDMing of ZrO2 and Al2O3 doped with quantities of TiC, NbC, and Cr3C2. From their investigations it can be derived that the composition is a very important factor, there being an optimum carbide content that optimises tile removal rate and the surface finish.In the same research line, Lee et al 20 analysed the EDM process of Al2O3 doped with up to 40%of TiC. The results showed a removal rate of 0.6 mm3/min, with a surface finish of 4um. It seems that negative polarity improves surface finish. Negative polarity produces a wider and shallower penetration, while in tile case of using positive polarity, penetration is deeper and localised 7.Other researchers 21 have proposed increasing the electrical conductivity of SiC by addingparticles of TiB., and that of Si3N4 by adding particles of TiN.An innovative method, still in laboratory scale, is the use of an assisting electrode for the EDMing of non-conductive ceramics 22. This technique is based on the use of a metallic plate located on the surface of the insulating ceramic. A diffusion of conductive particles occurs on the surface of the isolating material, so that the conductive layer progresses along with the feed of the electrode.At WZL (Aachen) a detailed study on the EDM process of ceramic materials has been carried out.Panten 23 paid most attention to wire EDM operations. The materials analysed were mainly ceramic composites with enough electrical conductivity. The work shows that the removal mechanisms in the case of ceramic materials are different to those of metals. Based on that work, Lenzen 24 analysed the process of EDM of ceramics from the point of view of tribologicalbehaviour of the machined components.Both research and industrial work have shown that there is a promising future for the process of EDM of technical ceramics. In the following paragraphs, tile development of an optimum technology for the electro discharge machining of an 毕业设计说明书 56industrial ceramic of great interest, such as boron carbide (B4C) is described. Along with the technology, an example of the benefits of usingEDM for the manufacturing of an industrial B4C component is shown.CONCLUSIONSFrom the work carried out, some conclusions can be drawn:* Final machining of precision ceramic components accounts for a high percentage of the final cost of the component .Therefore, improvements in conventional (grinding) and non-conventional machining methods must be proposed. * Even though grinding accounts for about 80% of the total cost of the machining of ceramic components, is subjected to important drawbacks, especially in what refers to the high cost of diamond grinding wheels and to the geometric limitations, mainly focused in the machining of blind holes. * In the case of finishing operations, non-conventional methods are an interesting alternative to be taken into account, especially those in which there is no contact between tool and workpiece. Amongst these methods, laser and EDM must be mentioned. EDM proves its feasibility for the optimum machining of ceramics with an electrical conductivity over 0.01 S/cm.* The optimum parameters for the EDMing of B4C have been obtained. This is a ceramic material with a promising future in many applications, but at the same time, one of the most difficult to machine materials due to its hardness It must be highlighted that the technology has been developed for an industrial machine with no modifications in its generator. This technology has been successfully used for the industrial manufacturing of a high added value component. *Special attention must be paid to surface integrity whatever the machining method is to be used Surface and sub-surface damage may be due to process induced mechanical stresses (grinding) or to recast material (non-contact processes, such as laser or EDM).High-added value industrial components in boron carbide can be EDMed, 毕业设计说明书 57achieving the hightolerances and surface finish specified by the final customer. This fact can open a new and interesting field of application to tile EDNI process.附件二:中文翻译附件二:中文翻译在最大实体特征下的作用力的要求在最大实体特征下的作用力的要求S C Diplaris* 和 M M Sfantsikopoulos机械工程学校,雅典、雅典,希腊的国民技术上的大学那手稿是在2004年5月19日被收到的而且在校订之后为在 2006 年六月 12 日的出版.DOI: 10.1243/09544054 B08604摘要摘要: : 时常使用的几何公差是位置公差。 当它是分配在最大实体特征 (MMC)时, 那增加的位置公差是被允许的, 等同于最大尺寸的部分特征。两者皆不的观念 - 位置公差和最大实体特征 - 分析地相关的与同等的特征的尺寸。 一个特征位置通常是根据理论上的精确尺寸分派,然而位置的准确性是通过适当的机械制造程序被追踪,通过适当的机械工具连接。MMC公差开发的奖金被引进于主要部分是为了减少期间的不合格品。像这种做法不是系统的,在程序计划阶段,最大实体特征的利益,没有被直接的拿入到账户中是为了要控制全部程序的费用。 在此说明书中,那允许制造的特征和位置误差是考虑过的和有计划的同时得以分析的方式。这表明低的作用力(PC)要求导致重要过程费用降低。一个应用例子证明了方法便用,结果并且被讨论。1.1.介绍介绍对于机械成分作要求的制造精度是被空间和几何公差联合指定的。紧迫公差同时对制造品质和增加制造费用有作用。几何公差是空间公差和零件制造和检测的补充。重要的和经常用的几何公差是位置公差。位置公差实际位置的可允许的变化量,实际尺寸是描述他的精确位置。孔或者轴特征关系到参考数据或者其他特征。对于圆柱特征,对于孔的位置公差是一个柱面通过深度或长度的特征,在里面中心面的特征必须展开。在工程平面中,位置公差的一个特征时表示一个圆柱直径公差带的大小,理论尺寸决定镇是位置。容易表明一个位置公差在轴的内部增加区域,例如,旋转特征必须展开百分之57,相反的可利用传统区域调整公差。通过这种方法在没毕业设计说明书 58有影响产品的质量的情况下可以使位置公差分配减少。在复式孔的集合中,位置公差经常代替并列公差。位置公差是特别有帮助的当它们是在最大实体特征的情况下被分配的。在最大实体特征状态下,位置公差的增加是被允许的,等同于从最小实体特征状态分离的大小。因此,一个特征的大小超出最大实体特征,但是在公差带和它的轴在扩大的最大实体特征的圆筒内是被允许的位置公差的准确性是不严格和不合格者的比率降低。 两者皆不的观念-位置公差和最大实体特征-分析的相关的精确的在工程图中位于实位置的尺寸链。在计划程序中,可是,一个特征位置通常位于精确尺寸链的基础上,反之必需的位置的准确性是通过适当的加工过程在适当的机械工具中被迫追踪的。开发最大实体特征的奖金被存入到账户中主要是为了在迟疑不的开发过程中减少它的不合格品。如果能够证明作用力远在范围之外,那么调整就能有利于它的缓和而且能减少它的费用。这样的方法显然不是系统的,被给于的最大实体特征的利益在处理过程没有被直接的打入到账户中是为了使全部的工序能力费用最佳化。 在下列区段中,在最大实体特征大小和位置下被允许的制造业的错误是被考虑过的和有计划的。他分析的被显示出比普通较低应用工序能力的需求可以被有计划的和更早的使用当计划程序时。重要的生产费用的减少能如此打成。那样引起的利润可能是更多的当特征样式与合成物的位置公差更同存在时,一个在很多机械成分中被集中起来的例子。一个应用的例子示范方法的使用和所获得的结果已经被证明过。2.2.理论上的分析理论上的分析 当一样的尺寸被用时(图 1) ,位置的公差应该位于矩形的区域里,他的大小是通过相等的空间公差被决定的。如果一个位置公差被改为(图 1(b) )对称轴特征应该位于矩形的圆周内部。当已经被提到时,增加产生的百分之 57 可用区域不能影响那些必需的精确性。额外公差的放松通过最大实体特征的红利能够达到更远。 (图2) 承担一个圆筒形的内直径,理论上精确的同等尺寸的轴中心坐标 X,Y 点和几0dDt何的位置公差(也就是圆柱公差) ,参考的材料 A.B.和 C 必须是在最大实体特征pt毕业设计说明书 59是被引长(图 3(a) ).部分统计的数量可以被认为是相当大的。在这种情况下公差规格的目的是控制圆柱销(控制销)的这是很明显的,那个控制销将能通过这个孔和它的轴将集中在 X,Y 点。为生产如此的孔直径 D,,而且轴通00DDDtDDt过一个和与理论上的中心 k 补重合的点 I(图 3(b)).这个控制销的最大直径公式是d=2(Ka)=2(1)是轴孔偏离它的真实距离与点 A 的连接线的大()()2LALK 小。很明显的。而且 maxmin/20pt和 maxmaxmin002()0(2)DDdDDtDt minminmax02(3)DpdDDtt maxmin00()22 (4)DDpDpdddDtDttttt是控制销的公差。dtddt 孔的直径 D 和孔轴偏离它的真实位置是可变的它们依赖于一些参数,包括那些相关机械工具的精准性,夹具,加工工序和环境等等。工业实践可以显示 D 和通过正态分布可以被描绘出来9。同样这些也可以应用于 d。D,d 和的标准偏差大体上应该是因为程序的能力指标。程序能力的索引在10,11中, /(5)CPT在公式里 T 是通过公差和被描绘出来正态分布的标准偏差的空间或几何特性。CP=1 的比率是百分之 99.73,然而 CP=1.33 的几率是百分之 99.993,10。 容量性能的结构计算公式可以被写为 maxmin2/6,2/6()/6/12 (6)DdDpCPtCPtt 在公式里是特征轴的偏离公差,。tt 他现在可以被考虑,依靠程序计划图和设备而且用工具加工,在某种程度上 D 和是相互依赖的,使 D 的大小保持在极限尺寸内同时也会影响尺寸的大小。如果是他们相互关系的系数,那么标准偏差尺寸 d 的大小,被给予方程式(1) ,然后和12相等 22244(7)dDD 对应的是直径 d,dCP毕业设计说明书 60 221/2maxmin2/6()/644(8)dddDDCPtdd 因为方程式(4)和方程式(6)的关系所以 22221/22/6/94/1444/36(9)dDpDDpD pDCPtttCPtCPt tCP CP 导致可以忽略的是孔的直径 D 的公差的刚性条件。 (例如=1.33) 。一个位DCPDCP置公差可能是被分配的,在另一方面,在孔的最大实体特征的大小。没有最大实体特征,孔的大小和位置偏差被分开验证,明显的,表现一个相等的刚性条件被CP当做。在这种情况下,=,方程式(9)导致,。由于最大DCPDCPCPDCPCP实体特征对空大小的分配,可接受的位置偏差是很松的,在这种情况下,查证位置公差与孔的实际尺寸大小的连系。能被减轻到一个较低水平比没有最大实体ptDCP特征任务的情况下。 =(10)DCPdCP从方程式(9)和(10) ,一个工序能力的需求是是如此获得的CP (11)CP221/224()4141DDDPPPDPtttttttt 低的程序能力,对于孔位置在最大实体特征的下偏差,可以检验应力的这种CP方法是适用的。 或者(12)2max262PDttCP12(2)1pDPDPttttt对于图四,得变化量,当作公差比的一个系数,方程式(11) ,是图表显示CPDPtt和不同的相互关系的系数的值。在同一个图表中,限制的方程式(12)的CPCP关系也被显示出来。同时也可以得到下列的关系:1.因为公差比1,大部分的平常应用软件,减少必需的过程能力能达到百分DPtt毕业设计说明书 61之 75,也就是0.33。没有最大实体特征,不合格率也是相同的,因此CP=1.33。CP2.因为0.25,在 D 和之间的相互关系的系数,对于方程式(12)检察限制DPtt不做任何任务。3.方程式(11)是一个逐渐减少的函数(D, )相互关系系数。当一个几何的位置公差被分配,那
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。