数学:《矩阵与变换》课件2(新人教A选修4-2).ppt_第1页
数学:《矩阵与变换》课件2(新人教A选修4-2).ppt_第2页
数学:《矩阵与变换》课件2(新人教A选修4-2).ppt_第3页
数学:《矩阵与变换》课件2(新人教A选修4-2).ppt_第4页
数学:《矩阵与变换》课件2(新人教A选修4-2).ppt_第5页
已阅读5页,还剩72页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内容解析教学建议 内容解析 通过几何变换讨论二阶矩阵的乘法及性质 逆矩阵和矩阵的特征向量 并以变换和映射的观点理解解线性方程组的意义 初步展示矩阵应用的广泛性 主要内容 2 1二阶矩阵与平面向量2 2几种常见的平面变换2 3变换的复合与矩阵的乘法2 4逆矩阵与逆变换2 5特征值与特征向量2 6矩阵的简单应用学习总结报告 具体内容 定位低起点 以初中数学知识为基础 低维度 以二阶矩阵为研究对象 形 数 以 几何图形 变换研究二阶矩阵 意图在基本思想上对矩阵 变换等有一个初步了解 对进一步学习和工作打下基础 本专题的定位和意图 主要数学思想 1 数学化思想 2 数学建模 3 数形结合的思想 4 算法思想 重点通过几何图形变换 学习二阶矩阵的基本概念 性质和思想 难点切变变换 逆变换 矩阵 特征值与特征向量 本专题重点 难点及主要数学思想 主线通过几何变换对几何图形的作用 直观认识矩阵的意义和作用 技术与内容的整合 1 几何变换 2 变换与矩阵的乘法 3 逆矩阵 几何画板 Excel 教学要点从具体实例入手 突出矩阵的几何意义 遵循从具体到一般 从直观到抽象的教学原则 本专题的教学思路 2 1二阶矩阵与平面向量2 2几种常见的平面变换2 3变换的复合与矩阵的乘法2 4逆矩阵与逆变换2 5特征值与特征向量2 6矩阵的简单应用 具体内容解析 2 1二阶矩阵与平面向量 建议课时 2课时 教育目标 1 了解矩阵产生背景 并会用矩阵形式表示一些实际问题 2 了解矩阵的相关知识 3 掌握二阶矩阵与平面列向量的乘法规则 4 理解矩阵对应着向量集合到向量集合的映射 2 1二阶矩阵与平面向量 2 在本章中点和向量不加区分 如 1 本专题研究的矩阵是二阶矩阵 对高阶矩阵只是要求学生初步了解 二阶矩阵如 两行两列 2 1二阶矩阵与平面向量 3 矩阵的概念 从表 网络图 坐标平面上的点 向量 生活实例等引出 即在大量举例的基础上引出矩阵的概念和表示方法 如 某公司负责从两个矿区向三个城市送煤 从甲矿区向城市A B C送煤的量分别是200万吨 240万吨 160万吨 从乙矿区向城市A B C送煤的量分别是400万吨 360万吨 820万吨 城市A城市B城市C甲矿区乙矿区 2 1二阶矩阵与平面向量 4 矩阵通常用大写黑体字母表示 如 矩阵A 行矩阵和列矩阵通常用希腊字母 等表示 5 两个矩阵的行数与列数分别相等 并且对应位置的元素也分别相等时两矩阵相等 6 二阶矩阵与列向量的乘法法则为 2 1二阶矩阵与平面向量 7 强化学生对二阶矩阵与平面列向量乘法的几何意义理解 使他们认识并理解矩阵是向量集合到向量集合的映射 为后面学习几种常见的几何变换打下基础 表示的几何变换为 纵坐标不变 横坐标变为原来的2倍 8 二元一次方程组可以表示为 系数矩阵 2 1二阶矩阵与平面向量2 2几种常见的平面变换2 3变换的复合与矩阵的乘法2 4逆矩阵与逆变换2 5特征值与特征向量2 6矩阵的简单应用 具体内容解析 2 2几种常见的平面变换 建议课时 6课时 教育目标 1 理解可以用矩阵表示平面中常见的几何变换 2 掌握恒等伸压反射旋转投影切变变换的矩阵表示及其几何意义 3 从几何上理解二阶矩阵对应的几何变换是线性变换 并证明二阶矩阵对应的变换往往将直线变成直线 2 2几种常见的平面变换 1 恒等变换矩阵 单位矩阵 为E 2 恒等变换是指对平面上任何一点 向量 或图形施以矩阵对应的变换 都把自己变为自己 2 2几种常见的平面变换 3 伸压变换矩阵是指将图形作沿x轴方向伸长或压缩 或沿y轴方向伸长或压缩的变换矩阵 伸压变换不是简单地把平面上的点 向量 向下 压 而是向x轴或y轴方向压缩 2 2几种常见的平面变换 4 反射变换矩阵是指将平面图形变为关于定直线或定点对称的平面图形的变换矩阵 2 2几种常见的平面变换 5 一般地 二阶非零矩阵对应的变换把直线变成直线 这种把直线变为直线的变换叫做线性变换 或点 2 2几种常见的平面变换 6 旋转变换矩阵是指将平面图形围绕原点逆时针旋转 的变换矩阵 其中 称为旋转角 点O为旋转中心 2 2几种常见的平面变换 2 2几种常见的平面变换 7 投影变换矩阵是指将平面图形投影到某条直线 或某个点 上的矩阵 相应的变换为投影变换 7 投影变换矩阵是映射 但不是一一映射 2 2几种常见的平面变换 8 切变变换矩阵是指类似于对纸牌实施的变换矩阵 2 2几种常见的平面变换 9 切变变换矩阵把平面上的点P x y 沿x轴方向平移个单位 10 研究平面上的多边形或直线在矩阵的变换作用后形成的图形时 只需考察顶 端 点的变化结果即可 旋转矩阵 2 1二阶矩阵与平面向量2 2几种常见的平面变换2 3变换的复合与矩阵的乘法2 4逆矩阵与逆变换2 5特征值与特征向量2 6矩阵的简单应用 具体内容解析 2 3变换的复合与矩阵的乘法 建议课时 2课时 教育目标 1 熟练掌握二阶矩阵与二阶矩阵的乘法 2 理解两个二阶矩阵相乘的结果仍然是一个二阶矩阵 从几何变换角度看 它表示的原来两个矩阵对应的连续两次变换 3 通过几何变换 使学生理解一般情况下 矩阵乘法不满足交换率 4 会验证矩阵乘法满足结合率 5 从几何变换的角度了解矩阵乘法不满足消去率 2 3变换的复合与矩阵的乘法 1 矩阵乘法的法则是 2 矩阵乘法MN的几何意义为对向量连续实施的两次几何变换 先TN 后TM 的复合变换 3 矩阵乘法不满足交换率 这可能是学生第一次遇到乘法不满足交换率的情况 此时 我们可以从几何变换角度进一步明确乘法一般不满足交换率 在适当时候 有些特殊几何变换 如两次连续旋转变换 满足交换率 2 3变换的复合与矩阵的乘法 4 要求学生从几何变换角度理解AB 5 要求学生从几何变换角度理解矩阵乘法不满足销去率 2 3变换的复合与矩阵的乘法 6 有关转移矩阵 假设某市的天气分为晴和阴两种状态 若今天晴 则明天晴的概率为 阴的概率为 若今天阴则明天晴的概率为 阴的概率为 这些概率可以通过观察某市以往几年每天天气的变化趋势来确定 通常将用矩阵来表示的这种概率叫做转移矩阵概率 对应的矩阵为转移矩阵 而将这种以当前状态来预测下一时段不同状态的概率模型叫做马尔可夫链 如果清晨天气预报报告今天阴的概率为 那么明天的天气预报会是什么 后天呢 2 3变换的复合与矩阵的乘法 2 3变换的复合与矩阵的乘法 2 3变换的复合与矩阵的乘法 7 转移矩阵每列的元素的和应该为1 否则做乘法时 容易出问题 2 1二阶矩阵与平面向量2 2几种常见的平面变换2 3变换的复合与矩阵的乘法2 4逆矩阵与逆变换2 5特征值与特征向量2 6矩阵的简单应用 具体内容解析 2 4逆变换与逆矩阵 建议课时 2课时 教育目标 1 通过具体的图形变换 理解逆矩阵的意义并掌握二阶矩阵存在逆矩阵的条件 通过具体的投影变换 说明它所对应矩阵的逆矩阵不存在 2 会证明逆矩阵的惟一性和 AB 1 B 1A 1等简单性质 3 会从几何变换的角度求出AB的逆矩阵 4 会用逆矩阵的知识解释二阶矩阵的乘法何时满足消去率 5 了解二阶行列式的定义 会用二阶行列式求逆矩阵和解方程组 2 4逆变换与逆矩阵 教育目标 6 能用变换与映射的观点认识解线性方程组解的含义 7 会用系数矩阵的逆矩阵求解方程组 8 会通过具体的系数矩阵 从几何上说明线性方程组解的存在性和惟一性 2 4逆变换与逆矩阵 2 课文从 走过去 走回来 的生动形象的话语中引入了逆矩阵和逆变换 这样安排让学生在轻松氛围中掌握 找到回家的路 的本质是已知矩阵A 能否找到一个矩阵B 使得连续进行的两次变换的结果与恒等变换的结果相同 也便于学生更好的理解逆矩阵 从而为例1的顺利解决打下基础 3 例1的设计起着承上启下的作用 所举的几个例子也是学生熟知的 学生可以从几何变换的角度借助直观找到答案 所以 例1的目的在于帮助学生从几何的角度理解逆矩阵的意义 并为后续学习积累丰富的感性认识 1 对于二阶矩阵A B 若有AB BA E 则称A是可逆的 B称为A的逆矩阵 2 4逆变换与逆矩阵 4 既然有些矩阵存在逆矩阵 那么 什么样的矩阵存在逆矩阵呢 课本从映射角度给出解释 让抽象的问题更贴近学生实际 5 矩阵的行列式为 则如果则矩阵存在逆矩阵 2 4逆变换与逆矩阵 7 逆矩阵的求解 2 4逆变换与逆矩阵 9 先穿袜子后穿鞋 先脱鞋子后脱袜子 解决了学生可能会出现的认知障碍 学生可以借助于此更好地理解公式 AB 1 B 1A 1 10 新教材的螺旋上升体系随处可见 课本在本节中就通过证明命题 已知A B C为二阶矩阵 且AB AC 若矩阵A存在逆矩阵 则B C 而既做到前后章节间的呼应 又要求学生会用逆矩阵的知识解释二阶矩阵的乘法何时满足消去率 11 逆矩阵与二元一次方程组密切相关 用逆矩阵的知识理解二元一次方程组的求解过程是为了让学生更好的认识两者 理解它们间的相互为用 相辅相成 2 4逆变换与逆矩阵 12 2 4逆变换与逆矩阵 14 2 4逆变换与逆矩阵 15 用二阶矩阵和行列式研究二元一次方程组的解的情况并不比消元法优越多少 但是 当方程组中的未知元很多时 矩阵就变成了研究它的一个强有力的工具 2 1二阶矩阵与平面向量2 2几种常见的平面变换2 3变换的复合与矩阵的乘法2 4逆矩阵与逆变换2 5特征值与特征向量2 6矩阵的简单应用 具体内容解析 2 5特征值与特征向量 建议课时 2课时 教育目标 1 掌握矩阵特征值与特征向量的定义 能从几何变换的角度说明特征向量的意义 2 会求二阶矩阵的特征值与特征向量 3 利用矩阵A的特征值 特征向量给出An 的简单表示 2 5特征值与特征向量 1 在本节开始部分 课本安排了两个学生熟知的伸压变换 并给出了变换前后的图形 其目的在于让学生借助于感性理解在矩阵的作用下某些向量的 不变性 从而为学生学习特征值和特征向量打下坚实基础 2 3 将矩阵的特征值与特征向量概念转换成矩阵与列向量的乘法表示来理解 其目的在于引出矩阵的特征多项式 课本没有对特征多项式作展开讨论 其意图是仅仅让学生将之作为一个工具 2 5特征值与特征向量 4 5 2 5特征值与特征向量 2 5特征值与特征向量 6 一个特征值对应着多个特征向量 7 有了特征值和特征向量的知识 我们就可以方便地计算多次变换的结果 2 5特征值与特征向量 2 5特征值与特征向量 投影变换 2 1二阶矩阵与平面向量2 2几种常见的平面变换2 3变换的复合与矩阵的乘法2 4逆矩阵与逆变换2 5特征值与特征向量2 6矩阵的简单应用 具体内容解析 2 6矩阵的简单应用 建议课时 2课时 教育目标 1 初步了解高阶矩阵 2 了解矩阵的简单应用 2 6矩阵的简单应用 1 只要求学生对高阶矩阵有一个感性认识 2 通过本节的学习 让学生了解到矩阵来源于实际生活需要 3 课本介绍了矩阵在数学领域内的应用 也介绍了它在经济学领域 密码学领域 生物学领域的应用 2 6矩阵的简单应用 5 课本介绍了 七桥问题 这个问题的解决既符合学生的实际 又能够引导学生了解更多的数学史内容 选修3 1 4 课本介绍了网络图 一级路矩阵和二级路矩阵 意图在于介绍高阶矩阵和激发学生学习图论的兴趣 为其它选修专题的开设打下基础 2 6矩阵的简单应用 6 本节的难点在于种群问题的解决 例6 2 6矩阵的简单应用 2 6矩阵的简单应用 2 6矩阵的简单应用 2 1二阶矩阵与平面向量2 2几种常见的平面变换2 3变换的复合与矩阵的乘法2 4逆矩阵与逆变换2 5特征值与特征向量2 6矩阵的简单应用学习总结报告 主要内容 学习总结报告 报告分三个方面的内容 1 知识的总结 理解本专题的整体思路 结构和内容 进一步认识变换的思想 2 拓展 通过查阅资料 调查报告 访问求教 独立思考 对矩阵及其应用作进一步探讨 3 学习本专题的感受和体会 教学建议 1 本专题只对具体的二阶方阵加以讨论 而不讨论一般m n阶矩阵以及 aij 形式的矩阵 教学建议 2 矩阵的引入要从具体的实例开始 通过具体的实例让学生认识到 某些几何变换可以用矩阵表示 丰富学生对矩阵几何意义的理解 并引导学生用映射的观点来认识矩阵 解线性方程组 不提倡先讲矩阵 后讲变换 3 要求从图形的变换直观地理解矩阵的乘法 并通过具体的实例让学生理解矩阵乘法的运算率 4 在新课讲解过程中适当地复习映射和一一映射 教学建议 5 应通过大量实例 借助立体几何图形的三视图来研究平面图形的几何变换 这样会让学生感到生动 单纯的平面几何变换比较抽象 6 可以将伸压变换与数学4中的三角变换结合起来 体现知识的螺旋上升 7 注意伸压变换和伸缩变换的异同 8 在证明二阶非零矩阵对应的变换把直线变为直线 或点 时 学生可能会感到困难 教师可以先复习定比分点的有关知识 自一部分内容不要求掌握 只要求学生能够直观地理解线性变换把直线变成直线 或点 教学建议 9 切变变换从几何上可以这样理解 保持图形面积大小不变 而点间距离和线间角可以改变 且点沿坐标轴运动的变换 这些不要求学生掌握 只要求学生能结合图形 用书上的方式直观描述 10 对于矩阵乘法满足结合率 可让学生自己动手验证 教学建议 11 行列式知识只限于二阶行列式 它仅仅是作为一个工具来使用 不作为重点 不应展开讨论 12 对二元一次方程组来说 用求逆矩阵的方法来解方程组并不简便 这里强调的是其思想 无需做大量练习 13 从具体伸压变换引入 不变性 不可缺少 只有在建立感性认识后才能对学生提出更高要求 不应该从定义上形式地理解特征值和特征向量 教学建议 14 课本介绍了特征多项式 只是将它作

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论