高中物理必修一第三、四章复习.doc_第1页
高中物理必修一第三、四章复习.doc_第2页
高中物理必修一第三、四章复习.doc_第3页
高中物理必修一第三、四章复习.doc_第4页
高中物理必修一第三、四章复习.doc_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四章、牛顿运动定律复习 一、牛顿第一定律1、内容:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止说明:(1)物体不受外力是该定律的条件 (2)物体总保持匀速直线运动或静止状态是结果 (3)直至外力迫使它改变这种状态为止,说明力是产生加速度的原因(4)物体保持原来运动状态的性质叫惯性,惯性大小的量度是物体的质量(5)应注意:牛顿第一定律不是实脸直接总结出来的牛顿以伽利略的理想斜面实脸为基拙,加之高度的抽象思维,概括总结出来的不可能由实际的实验来验证;牛顿第一定律不是牛顿第二定律的特例,而是不受外力时的理想化状态定律揭示了力和运动的关系:力不是维持物体运动的原因,而是改变物体运动状态的原因2、惯性:物体保持匀速直线运动状态或静止状态的性质说明:惯性是物体的固有属性,与物体是否受力及运动状态无关质量是惯性大小的量度质量大的物体惯性大,质量小的物体惯性小规律方法【例1】科学思维和科学方法是我们认识世界的基本手段在研究和解决问题过程中,不仅需要相应的知识,还要注意运用科学方法 理想实验有时更能深刻地反映自然规律,伽利略设想了一个理想实验,其中有一个是实验事实,其余是推论减小第二个斜面的倾角,小球在这斜面上仍然要达到原来的高度;两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面;如果没有摩擦,小球将上升到原来释放的高度;续减小第二个斜面的倾角,最后使它成水平面,小球要沿水平面做持续的匀速运动请将上述理想实验的设想步骤按照正确的顺序排列 只要填写序号即可)在上述的设想步骤中,有的属于可靠的事实,有的则是理想化的推论下列关于事实和推论的分类正确的是( )A、是事实,是推论B、是事实,是推论C、是事实,是推论D、是事实,是推论【例2】下列说法正确的是( )A、运动得越快的汽车越不容易停下来,是因为汽车运动得越快,惯性越大B、小球在做自由落体运动时,惯性不存在了C、把一个物体竖直向上抛出后,能继续上升,是因为物体仍受到一个向上的推力D、物体的惯性仅与质量有关,质量大的惯性大,质量小的惯性小【例3】公共汽车在平直的公路上行驶时,固定于路旁的照相机每隔两秒连续两次对其拍照,得到清晰照片,如图所示分析照片得到如下结果:(1)在两张照片中,悬挂在公共汽车顶棚上的拉手均向后倾斜且程度相同;(2)对间隔2s所拍的照片进行比较,可知汽车在2s内前进了12 m.根据这两张照片,下列分析正确的是( )A.在拍第一张照片时公共汽车正加速B.可求出汽车在t1s时的运动速度C.若后来发现车顶棚上的拉手自然下 垂,则汽车一定停止前进D.若后来发现车顶棚上的拉手自然下 垂,则汽车可能做匀速运动【例4】由同种材料制成的物体A和B放在长木板上,随长木板一起以速度v向右做匀速直线运动,如图所示,已知MA MB,某时刻木板停止运动,下列说法正确的是 )A、若木块光滑,由于A的惯性较大,A、B间的距离将增大B、若木板光滑,由于B的惯性较小,A、B间距离将减小C、若木板粗糙,A、B一定会相撞D、 不论木板是否光滑,A、B间的相对距离保持不变思考:本题的结论与A、B的质量有关吗? 若A、B的动摩擦因数不等,则A、B间的距离可能怎样变?二、牛顿第三定律(1)内容:两物体之间的作用力与反作用力总是大小相等,方向相反,而且在一条直线上(2)表达式:F=F/说明:作用力和反作用力同时产生,同时消失,同种性质,作用在不同的物体上,各产生其效果,不能抵消,所以这两个力不会平衡作用力和反作用力的关系与物体的运动状态无关不管两物体处于什么状态,牛顿第三定律都适用。 助牛顿第三定律可以变换研究对象,从一个物体的受力分析过渡到另一个物体的受力分析(3)作用力和反作用力与平衡力的区别 注意:判断两个力是不是一对作用力与反作用力时,应分析这两个力是否具有“甲对乙”和“乙对甲”的关系,即受力物体与施力物体是否具有互易关系否则,一对作用力和反作用力很容易与一对平衡力相混淆,因为它们都具有大小相等、方向相反、作用在同一条直线上的特点规律方法【例5】物体静止于一斜面上如图所示则下述说法正确的是( ) A、物体对斜面的压力和斜面对物体的持力是一对平衡力B、物体对斜面的摩擦力和斜面对物体的摩擦力是一对作用力和反作用力C、物体所受重力和斜面对物体的作用力是一对作用力和反作用力D、物体所受重力可以分解为沿斜面向下的力和对斜面的压力【例6】如图所示,两个小球A和B,中间用弹簧连接,并用细绳悬于天花板下,下面四对力中,属于平衡力的一对力是( ) A 绳对A的拉力和弹簧对A的拉力 B 弹簧对A的拉力和弹簧对B的拉力 C 弹簧对B的拉力和B对弹簧的拉力 D B的重力和弹簧对B的拉力 三、牛顿第二定律1、内容:物体的加速度与所受合外力成正比,与物体的质量成反比,加速度的方向与合外力的方向相同2、公式:F=ma3、对牛顿第二定律理解:(1)F=ma中的F为物体所受到的合外力(2)Fma中的m,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统(几个物体组成一个系统)做受力分析时,如果F是系统受到的合外力,则m是系统的合质量(3)Fma中的 F与a有瞬时对应关系, F变a则变,F大小变,a则大小变,F方向变a也方向变(4)Fma中的 F与a有矢量对应关系, a的方向一定与F的方向相同。(5)Fma中,可根据力的独立性原理求某个力产生的加速度,也可以求某一个方向合外力的加速度(6)Fma中,F的单位是牛顿,m的单位是千克,a的单位是m/s2【例7】如图所示,轻绳跨过定滑轮(与滑轮问摩擦不计)一端系一质量为m的物体,一端用F的拉力,结果物体上升的加速度为a1,后来将F的力改为重力为F的物体,m向上的加速度为a2则( ) Aa1a2 ;Ba1a2 ;C、a1a2 ;D无法判断规律方法1、突变类问题(力的瞬时性)(1)物体运动的加速度a与其所受的合外力F有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之前或之后的力无关,不等于零的合外力作用的物体上,物体立即产生加速度;若合外力的大小或方向改变,加速度的大小或方向也立即(同时)改变;若合外力变为零,加速度也立即变为零(物体运动的加速度可以突变)。(2)中学物理中的“绳”和“线”,是理想化模型,具有如下几个特性: A轻:即绳(或线)的质量和重力均可视为等于零,同一根绳(或线)的两端及其中间各点的张为大小相等。B软:即绳(或线)只能受拉力,不能承受压力(因绳能变曲),绳与其物体相互间作用力的方向总是沿着绳子且朝绳收缩的方向。C不可伸长:即无论绳所受拉力多大,绳子的长度不变,即绳子中的张力可以突变。(3)中学物理中的“弹簧”和“橡皮绳”,也是理想化模型,具有如下几个特性:A轻:即弹簧(或橡皮绳)的质量和重力均可视为等于零,同一弹簧的两端及其中间各点的弹力大小相等。B弹簧既能承受拉力,也能承受压力(沿着弹簧的轴线),橡皮绳只能承受拉力。不能承受压力。C、由于弹簧和橡皮绳受力时,要发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能发生突变。(4)做变加速度运动的物体,加速度时刻在变化(大小变化或方向变化或大小、方向都变化度叫瞬时加速度,由牛顿第二定律知,加速度是由合外力决定的,即有什么样的合外力就有什么样的加速度相对应,当合外力恒定时,加速度也恒定,合外力随时间变化时,加速度也随时间改变,且瞬时力决定瞬时加速度,可见,确定瞬时加速度的关键是正确确定瞬时作用力。【例8】如图(a)所示,木块A、B用轻弹簧相连,放在悬挂的木箱C内,处于静止状态,它们的质量之比是1:2:3。当剪断细绳的瞬间,各物体的加速度大小及其方向?【例9】在光滑水平面上有一质量mIkg的小球,小球与水平轻弹簧和与水平方向夹角O为300的轻绳的一端相连,如图所示,此时小球处于静止状态,且水平面对小球的弹力恰好为零,当剪断轻绳的瞬间,小球加速度的大小和方向如何?此时轻弹簧的弹力与水平面对球的弹力比值是多少? BCAm【例10】如图所示,小球质量为m,被三根质量不计的弹簧A、B、C拉住,弹簧间的夹角均为1200,小球平衡时, A、B、C的弹力大小之比为3:3:1,当剪断C瞬间,小球的加速度大小及方向可能为:g/2,竖直向下;g/2,竖直向上;g/4,竖直向下;g/4,竖直向上;( )A、; B、; C、; D、;2、用牛顿第二定律分析物体的运动状态牛顿第二定律的核心是加速度与合外力的瞬时对应关系,瞬时力决定瞬时加速度,解决这类问题要注意:(1)确定瞬时加速度关键是正确确定瞬时合外力(2)当指定某个力变化时,是否还隐含着其他力也发生变化(3)整体法与隔离法的灵活运用MN【例11】如图所示,一向右运动的车厢顶上悬挂两单摆M和N,它们只能在图所示平面内摆动,某一瞬时出现图示情景,由此可知车厢的运动及两单摆相对车厢运动的可能情况是( )A、车厢做匀速直线运动,M在摆动,N在静止;B、车厢做匀速直线运动,M在摆动,N也在摆动;C、车厢做匀速直线运动,M静止,N在摆动;D、车厢做匀加速直线运动,M静止,N也静止; 四、牛顿运动定律的应用一、牛顿运动定律的解题步骤应用牛顿第二定律解决问题时,应按以下步骤进行1分析题意,明确已知条件和所求量2、选取研究对象;所选取的对象可以是一个物体,也可以是几个物体组成的系统,同一个题目,根据题意和解题需要也可以先后选取不同的研究对象。3对其进行受力情况分析和运动情况分析(切莫多力与缺力);4根据牛顿第二定律列出方程;说明:如果只受两个力,可以用平行四边形法则求其合力,如果物体受力较多,一般用正交分解法求其合力,如果物体做直线运动,一般把力分解到沿运动方向和垂直于运动方向;当求加速度时,要沿着加速度的方向处理力;当求某一个力时,可沿该力的方向分解加速度;5把各量统一单位,代入数值求解;特别提醒:注意事项 由于物体的受力情况与运动状态有关,所以受力分析和运动分析往往同时考虑,交叉进行,在画受力分析图时,把所受的外力画在物体上(也可视为质点,画在一点上),把v0和a的方向标在物体的旁边,以免混淆不清。建立坐标系时应注意:A如果物体所受外力都在同一直线上,应建立一维坐标系,也就是选一个正方向就行了。如果物体所受外力在同一平面上,应建立二维直角坐标系。B仅用牛顿第二定律就能解答的问题,通常选加速度a的方向和垂直于a的方向作为坐标轴的正方向,综合应用牛顿定律和运动学公式才能解答的问题,通常选初速度V0的方向和垂直于V0的方向为坐标轴正方向,否则易造成“十”“一”号混乱。C如果所解答的问题中,涉及物体运动的位移或时间,通常把所研究的物理过程的起点作为坐标原点。解方程的方法一般有两种:一种是先进行方程式的文字运算,求得结果后,再把单位统一后的数据代入,算出所求未知量的值。另一种是把统一单位后的数据代入每个方程式中,然后直接算出所求未知量的值,前一种方法的优点是:可以对结果的文字式进行讨论,研究结果是否合理,加深对题目的理解;一般都采用这种方法,后一种方法演算比较方便,但是结果是一个数字,不便进行分析讨论。(特别指出的是:在高考试题的参考答案中,一般都采用了前一种方法,)规律方法 1、牛顿定律应用的基本方法【例12】如图电梯与水平面夹角为370,60千克的人随电梯以alm/s2的加速度运动,则人受到平面的支持力及摩擦力各为多大?( g取10 rns2) 【例13】惯性制导系统已广泛应用于弹道式导弹工程中,这个系统的重要元件之一是加速度计加速度计的构造原理的示意图如图所示沿导弹长度方向安装在固定光滑杆上的滑块m,滑块两侧分别与劲度系数均为k的弹簧相连;两弹簧的另一端与固定壁相连滑块原来静止,弹簧处于自然长度,滑块上有指针,可通过标尺测出滑块的位移,然后通过控制系统进行制导设某段时间内导弹沿水平方向运动,指针向左偏离O点的距离为s,则这段时间内导弹的加速度( )A、方向向左,大小为ks/m B、方向向右,大小为ks/mC、方向向左,大小为2ks/m D、方向向右,大小为2ks/m2、超重与失重状态的分析(1)在平衡状态时,物体对水平支持物的压力(或对悬绳的拉力)大小等于物体的重力(2)当物体的加速度竖直向上时,物体对支持物的压力大于物体的重力,由Fmg=ma得F=m(ga)mg,这种现象叫做超重现象;(3)当物体的加速度竖直向下时,物体对支持物的压力小于物体的重力,mgF=ma得F=m(ga)mg,这种现象叫失重现象(4)特别是当物体竖直向下的加速度为g时,物体对支持物的压力变为零,这种状态叫完全失重状态(5)对超重和失重的理解应当注意以下几点:物体处于超重或失重状态时,只是物体的视重发生改变,物体的重力始终存在,大小也没有变化发生超重或失重现象与物体的速度大小及方向无关,只决定于加速度的 方向及大小在完全失重的状态下,平常一切由重力产生的物理现象都会完全消失, 如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生向下的压强等。【例14】一人在4m/s2加速下降的电梯中最多能举起80kg的物体;若此人在一匀加速上升的升降机内最多能举起40kg的物体,则此升降机上升的加速度为多少?(g=10m/s2)m1m3m2【例15】一个人蹲在台秤上。试分析:在人突然站起的过程中,台秤的示数如何变化?思考:若人突然蹲下,台秤示数又如何变化?【例16】如图所示滑轮的质量不计,已知三个物体的质量关系是:m1m2十m3,这时弹簧秤的读数为T,若把物体m2从右边移到左边的物体m1上,弹簧秤的读数T将( )A.增大; B.减小; C.不变; D.无法判断【例17】如图所示,有一个装有水的容器放在弹簧台秤上,容器内有一只木球被容器底部的细线拉住浸没在水中处于静止,当细线突然断开,小球上升的过程中,弹簧秤的示数与小球静止时相比较有( ) A.增大; B.不变; C.减小; D.无法确定【例18】将金属块m用压缩的轻弹簧卡在一个矩形的箱中,如图所示,在箱的上顶板和下顶板装有压力传感器,箱可以沿竖直轨道运动,当箱以a=2.0m/s2的加速度竖直向上作匀减速运动时,上顶板的压力传感器显示的压力为6.0 N,下底板的压力传感器显示的压力为10.0 N。 (g取10m/s2)(1)若上顶板的压力传感器的示数是下底板的压力传感器的示数的一半,试判断箱的运动情况;(2)要使上顶板的压力传感器的示数为零,箱沿竖直方向运动的情况可能是怎样的?二、简单连接体问题的处理方法在连接体问题中,如果不要求知道各个运动物体之间的相互作用力,并且各个物体具有大小和方向都相同的加速度,就可以把它们看成一个整体(当成一个质点)分析受到的外力和运动情况,应用牛顿第二定律求出加速度(或其他未知量);如果需要知道物体之间的相互作用力,就需要把物体从系统中隔离出来,将内力转化为外力,分析物体的受力情况和运动情况,并分别应用牛顿第二定律列出方程隔离法和整体法是互相依存、互相补充的两种方法互相配合交替应用,常能更有效地解决有关连接体的问题注意事项:用隔离法解连接体问题时,容易产生如下错误:(l)例如F推M及m一起前进(如图),隔离m分析其受力时,认为F通过物体M作用到m上,这是错误的(2)用水平力F通过质量为m的弹簧秤拉物体M在光滑水平面上加速运动时(如图所示不考虑弹簧秤的重力),往往会认为弹簧秤对物块M的拉力也一定等于F实际上此时弹簧秤拉物体M的力F/Fma,显然F/F只有在弹簧秤质量可不计时,才可认为F/F规律方法 连接体的求解方法【例19】一质量为M,倾角为的楔形木块,放在水平桌面上,与桌面间的动摩擦因数为,一物块质量为m,置于楔形木块的斜面上,物块与斜面的接触是光滑的为了保持物块相对斜面静止,可用一水平力F推楔形木块,如图所示,求此水平力大小的表达式说明:(l)物体间相对静止指的是物体间的相对速度和相对加速度均为零的状态 (2)系统内各物体的加速度相同,是整体法与隔离法的联接点【例20】如图所示,A,B并排紧贴着放在光滑的水平面上,用水平力F1 ,F2同时推A和B.如F1=10N,F2=6N,mAmB,则A,B间的压力可能为( ) A. 9 N; B. 9.5 N; C. 11 N; D. 7 N; 【例21】如图所示三个物体质量分别为m1、m2、m3,带有滑轮的物体放在光滑水平面上,滑轮和所有触处的摩擦及绳的质量均不计,为使三个物体无相对运动,则水平推力F 注意:几个物体加速度一样时,可先从一个物体入手,求出加速度a,然后将这几个物体视为一系统求合外力。三、应用牛顿运动定律解题的特殊方法1用极端分析法分析临界条件 若题目中出现“最大”、“最小”、“刚好”等词语时,一般都有临界现象出现,分析时,可用极端分析法,即把问题(物理过程)推到极端(界),分析在极端情况下可能出现的状态和满足的条件,应用规律列出在极端情况下的方程,从而暴露出临界条件2用假设法分析物体受力 在分析某些物理过程时,常常出现似乎是这又似乎是那的多种可能性,难以直观地判断出来此时可用假设法去分析 方法I:假定此力不存在,根据物体的受力情况分析物体将发生怎样的运动,然后再确定此力应在什么方向,物体才会产生题目给定的运动状态 方法:假定此力存在,并假定沿某一方向,用运动规律进行分析运算,若算得结果是正值,说明此力确实存在并与假定方向相同;若算得的结果是负值,说明此力也确实存在,但与假定的方向相反;若算得的结果是零,说明此力不存在【例22】如图,车厢中有一倾角为300的斜面,当火车以10ms2的加速度沿水平方向向左运动时,斜面上的物体m与车厢相对静止,分析物体m所受摩擦力的方向 说明:极端分析法、特值分析法、临界分析法、假设法等都是解答物理题时常用到的思维方法望同学们结合平时的解题训练,认真地体会各种方法的实质、特点,总结每种方法的适用情境【例23】如图所示,2kg的物体放在水平地面上,物体离墙20m,现用30N的水平力作用于此物体,经过2s可到达墙边,若仍用30N的力作用于此物体,求使物体到这墙边作用力的最短作用时间? 注意:力的作用时间最短与物体运动时间最短有什么区别?如何求物体运动到墙的最短时间?【例24】如图所示,在劲度系数为k的弹簧下端挂一质量为m的物体,物体下有一托盘,用托盘托着物体使弹簧恰好处于原长然后使托盘以加速度a竖直向下做匀加速直线运动(ag),试求托盘向下运动多长时间能与物体脱离? 【例25】将金属块m用压缩的轻弹簧卡在一个矩形的箱中,如图所示,在箱的上顶板和下底板装有压力传感器,箱可以沿竖直轨道运动,当箱以a=2.0m/s2的加速度竖直向上做匀减速运动时,上顶板的传感器显示的压力为6.0N,下底板的传感器显示的压力为10.0N(取g=10m/s2)(1)若上顶板传感器的示数是下底板传感器的示数的一半,试判断箱的运动情况。(2)使上顶板传感器的示数为零,箱沿竖直方向运动的情况可能是怎样的?四 、动力学的两类基本问题 1、已知物体的受力情况求物体运动中的某一物理量:应先对物体受力分析,然后找出物体所受到的合外力,根据牛顿第二定律求加速度a,再根据运动学公式求运动中的某一物理量2、已知物体的运动情况求物体所受到的某一个力:应先根据运动学公式求得加速度a,再根据牛顿第二定律求物体所受到的合外力,从而就可以求出某一分力 综上所述,解决问题的关键是先根据题目中的已知条件求加速度a,然后再去求所要求的物理量,加速度象纽带一样将运动学与动力学连为一体【例26】如图所示,放在水平地面上的木板长1米,质量为2kg,B与地面间的动摩擦因数为 02一质量为3kg的小铁块A放在B的左端,A、B之间的动摩擦因数为04当A以3ms的初速度向右运动后,求最终A对地的位移和A对B的位移【解析】A在摩擦力作用下作减速运动,B在上、下两个表面的摩擦力的合力作用下先做加速运动,当A、B速度相同时,A、B立即保持相对静止,一起向右做减速运动 A在B对它的摩擦力的作用下做匀减速运动 aA=Ag=一4ms2 B在上、下两个表面的摩擦力的合力作用下做匀加速运动 aB= =lms2 A相对B的加速度 a相=aAaB5ms2当A相对B的速度变为零时,A在B上停止滑动,在此过程中,A对B的位移s相=0.9mA从开始运动到相对静止经历的时间t=0.6m/s2 在此时间内B的位移SB=1/2aBt2=1/210.62=0.18m A、B相对静止时的速度 vaBt10.6m/s0.6m/s随后A、B一起以a/=Bg=2m/s2作匀减速运动直至停止,这段时间内的位移 S/=009m综上所述在整个运动过程中A对地的位移 SA=SB十S相S/=(01809009)ml17m【例27】如图所示,水平传送带A、B两端相距S3.5m,工件与传送带间的动摩擦因数=0.1。工件滑上A端瞬时速度VA4 m/s,达到B端的瞬时速度设为vB。(1)若传送带不动,vB多大?(2)若传送带以速度v(匀速)逆时针转动,vB多大?(3)若传送带以速度v(匀速)顺时针转动,vB多大?【解析】(1)传送带不动,工件滑上传送带后,受到向左的滑动摩擦力(Ff=mg)作用,工件向右做减速运动,初速度为VA,加速度大小为aglm/s2,到达B端的速度.(2)传送带逆时针转动时,工件滑上传送带后,受到向左的滑动摩擦力仍为Ff=mg ,工件向右做初速VA,加速度大小为ag1 m/s2减速运动,到达B端的速度vB=3 m/s.(3)传送带顺时针转动时,根据传送带速度v的大小,由下列五种情况:若vVA,工件滑上传送带时,工件与传送带速度相同,均做匀速运动,工件到达B端的速度vB=vA若v,工件由A到B,全程做匀加速运动,到达B端的速度vB=5 m/s.若vVA,工件由A到B,先做匀加速运动,当速度增加到传送带速度v时,工件与传送带一起作匀速运动速度相同,工件到达B端的速度vB=v.若v时,工件由A到B,全程做匀减速运动,到达B端的速度若vAv,工件由A到B,先做匀减速运动,当速度减小到传送带速度v时,工件与传送带一起作匀速运动速度相同,工件到达B端的速度vBv。 说明:(1)解答“运动和力”问题的关键是要分析清楚物体的受力情况和运动情况,弄清所给问题的物理情景(2)审题时应注意由题给条件作必要的定性分析或半定量分析(3)通过此题可进一步体会到,滑动摩擦力的方向并不总是阻碍物体的运动而是阻碍物体间的相对运动,它可能是阻力,也可能是动力实验复习一、验证力的平行四边形定则 1、演示实验并解说AOOFF1F2(1)把方木板固定在黑板上,用图钉把白纸固定在木块上。(2)用图钉把橡皮条一端固定在A点,结点自然状态在O点,结点上系着细绳,细绳的另一端系着绳套。(3)用两弹簧秤分别勾住绳索,互成角度地拉橡皮条,使结点到达O点。让学生记下O的位置,用铅笔和刻度尺在白纸上从O点沿两条细绳的方向画线,记下F1、F2的力的大小。 (4)放开弹簧秤,使结点重新回到O点,再用一只弹簧秤,通过细绳把橡皮条的结点拉到O,读出弹簧秤的示数F,记下细绳的方向,按同一标度作出F1、F2和F的力的图示。 (5)用三角板以F1、F2为邻边作平行四边形,在误差范围内,F几乎是F1、F2为邻边的平行四边形的对角线。 经过前人很多次的、精细的实验,最后确认,对角线的长度、方向、跟合力的大小、方向一致,即对角线与合力重合,也就是说,对角线就表示F1、F2的合力。 归纳:可见互成角度的两个力的合成,不是简单的将两个力相加减,而是用表示两个力的有向线段为邻边作平行四边形,这两邻边之间的对角线就表示合力的大小和方向。这就叫平行四边形定则。2、注意事项(1)本实验中,以橡皮筋的伸长(结点到达某一位置)衡量力的作用效果,故在同一次实验中,应使两种情况下结点到达同一位置。(2)实验时,弹簧秤必须保持与木板平行,且拉力应沿轴线方向,以减小实验误差,测量前应首先检查弹簧秤的零点是否准确,注意使用中不要超过其弹性限度,弹簧秤的读数应估读到其最小刻度的下一位。课堂练习1、在“验证平形四边形定则”的实验中,有A、B两个弹簧秤拉橡皮条的结点,使其位于O处,如图所示,此时,+=90,现在保持A读数不变,减小角,要使结点仍在O处,可采用的办法是( ) A增大B的读数,同时减小角 B增大B的读数,同时增大角 C减小B的读数,同时减小角 D减小B的读数,同时增大角2在做“互成角度的两个力的合成”的实验时,需要的器材有:方木板、白纸、细绳套两个,三角板、刻度尺、图钉几个,还需 。做此实验时,在水平放置的木板上垫上一张白纸,把橡皮条的一端固定在板上,另一端结两个细绳套,通过细绳用两个互成角度的弹簧秤拉橡皮条,使结点移到某一位置O,此时需记下: 。然后用一个弹簧秤把橡皮条拉长,使结点到达 ,再记下 和 。3、如图所示为四位同学在“验证力的平行四边形定则”的实验中所作的图示,F1和F2是两个弹簧秤同时拉橡皮条时的力的图示,F是一个弹簧秤单独拉橡皮条时的力的图示,F是根据平行四边形定则作出的F1和F2的合力的图示,其中错误的一个图是 .二、验证牛顿第二定律1.实验原理: 实验装置如图。用细线将小车(质量记为M)和砂桶(内装有细砂,总质量为m)连接起来,构成一个系统。当系统做加速运动时,有: a=mg/(M+m)绳对车的拉力FT=Ma=Mmg/(M+m)= 当Mm时,FTmg。故可通过改变砂桶中细砂的质量来改变拉力的大小,从而验证加速度与拉力的关系;在小车上添加砝码来改变小车的质量,从而验证加速度与质量的关系。2.实验步骤1.通过调节木板的倾斜程度,用重力沿斜面的分力来平衡摩擦力。 此时不挂砂桶,但应把纸带在打点计时器的限位孔中穿好。2.保持小车的质量不变,改变砂桶中细砂的质量,测出相应的加速度,验证当M一定时,a与F与关系。3.保持外力(即砂桶中细砂的质量)不变,在小车上加砝码,测出相应的加速度,优证当作用力一定时,a与M的关系。3.数据记录及处理1.实验中要测定小桶和细砂的总质量m,小车及砝码的总质量

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论