




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
解二元一次方程组学案适用学科初中数学适用年级初中一年级适用区域全国-人教版课时时长(分钟)120知识点1. 解二元一次方程组2. 含字母系数的二元一次方程组3. 解三元一次方程组学习目标1. 了解二元一次方程(组)的有关概念;掌握代入消元法和加减消元法;能选择恰当的方法解二元一次方程组2. 会运用二元一次方程组解决简单的实际问题学习重点1. 掌握加减消元法和代入消元法解二元一次方程组;2. 会解含参数的二元一次方程组。学习难点1. 用恰当的方法解二元一次方程组2. 解含字母参数的二元一次方程组学习过程一、复习预习1如果a3xby与a2ybx+1是同类项,则()ABCD【答案】D【解析】a3xby与a2ybx+1是同类项,代入得,3x=2(x+1),解得x=2,把x=2代入得,y=2+1=3,所以,方程组的解是2解二元一次联立方程式,得y=()A4BCD5【答案】A【解析】原方程组即:,得:2y=8,解得:y=4二、知识讲解1.二元一次方程(组)(1)代入法解二元一次方程组的一般步骤:“变”从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来,变成y=ax+b的形式。“代”将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程。“解”解出这个一元一次方程,求出x的值。“回代”把求得的x值代入y=ax+b中求出y的值;“联”把x、y的值用联立起来。(2)加减消元法解二元一次方程组步骤:“乘”方程组的两个方程中,如果同一个未知数的系数既不互为相反数也不相等,那么就用适当的数乘方程两边,使同一个未知数的系数互为相反数或相等;“加减”把两个方程两边分别相加或相减,消去一个未知数、得到一个一元一次方程;“解”解这个一元一次方程,求得一个未知数的值。“回代”将求得的未知数的值代入原方程组中任意一方程中,求出另一未知数的值。“联”把求得的两个未知数的值用联立起来。考点/易错点1判定一个方程是二元一次方程必须同时满足三个条件:方程两边的代数式都是整式整式方程;含有两个未知数“二元”;含有未知数的项的最高次数为1“一次”。三、例题精析【例题1】【题干】(2013凉山州)已知方程组,则x+y的值为()A1B0C2D3【答案】D解:,2得,2x+6y=10,得,5y=5,解得y=1,把y=1代入得,2x+1=5,解得x=2, 所以,方程组的解是,所以,x+y=2+1=3 【解析】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单【例题2】【题干】已知二元一次方程组的解为,且m+n=2,求k的值【答案】由题意得,(2)+(3)得:,代入(1)得:k=3【解析】本题的实质是考查三元一次方程组的解法需要对三元一次方程组的定义有一个深刻的理解通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法解三元一次方程组的关键是消元解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成元该未知数的二元一次方程组【例题3】【题干】已知等式(3AB)x+(2A+5B)=5x8对于一切实数x都成立,则A,B的值为()ABCD【答案】A原式可化为(3AB5)x+(2A+5B+8)=0,由于对于一切实数x都成立,故,解得【解析】根据条件“对于一切实数x都成立”,将原式转化为关于A、B的二元一次方程组解答,体现了转化思想的应用。四、课堂运用【基础】1.(2012雅安)由方程组 可得出x与y的关系是()A2x+y=4B2xy=4C2x+y=4D2xy=42. 如果方程组 的解与方程组的解相同,则a,b的值是()A BCD【巩固】1.与已知二元一次方程5xy=2组成的方程组有无数多个解的方程是()A10x+2y=4B4xy=7C20x4y=3D15x3y=6【拔高】1.如果方程组 ,的解也是方程3x+my+2z=0的解,求m的值课程小结1. 解二元一次方程组2. 解三元一次方程组3. 含字母系数的二元一次方程组课后作业【基础】1.用加减消元法解方程组的最佳策略是()A3,消去xB93,消去xC2+7,消去yD27,消去y2.解方程(组)(1) (2)【巩固】1.已知关于x、y的方程组无解,则m的值是()Am=6Bm=Cm=Dm=62.已知关于x、y的方程组与有相同的解,求a、b的值【拔高】1.阅读下列材料,然后解答后面的问题:我们知道二元一次方程组的求解方法是消元法,即可将它化为一元一次方程来解,可求得方程组有唯一解我们也知道二元一次方程2x+3y=12的解有无数个,而在实际问题中我们往往只需要求出其正整数解下面是求二元一次方程2x+3y=12的正整数解的过程:由2x+3y=12得:y=,x、y为正整数,则有0x6又y=4为正整数,则为正整数,所以x为3的倍数。又因为0x6,从而x=3,代入:y=4=2,2x+3y=12的正整数解为问题:(1)若为正整数,则满足条件的x的值有几个()A2B3C4D5(2)九年级某班为了奖励学习进步的学生,花费35元购买了笔记本和钢笔两种奖品,其中笔记本的单价为3元/本,钢笔单价为5元/支,问有几种购买方案?(3)试求方程组的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京市昌平区2024-2025学年八年级下学期第二次月考物理试题含参考答案
- 采薇的语言鉴赏与历史背景探讨:语文教学教案
- 时间巧安排课件
- 一支好香烟500字(11篇)
- 让网络空间清朗起来400字(7篇)
- 时事政务知识培训课件
- 请跟我来学校250字(15篇)
- 早餐培训面点师课件模板
- 观后感白芳礼的观后感900字(7篇)
- 纪检15严禁课件
- 2025-2026年秋季学期各周国旗下讲话安排表+2025-2026学年上学期升旗仪式演讲主题安排表
- 物业公司电瓶车管理制度
- 肺占位性病变护理查房
- 心源性休克的护理个案
- 广告创意与用户体验-第3篇-洞察阐释
- 2024年10月19日北京市下半年事业单位七区联考《公共基本能力测验》笔试试题(海淀-房山-西城-通州-丰台-怀柔)真题及答案
- 幼儿园一日常规安全培训
- 5G基带芯片算法验证平台:从设计到实现的关键技术与实践
- 《中国动态血压监测基层应用指南(2024年)》解读 2
- 2025初中语文新教材培训
- 企业技术人员管理制度
评论
0/150
提交评论