相似三角形---一线三等角型.doc_第1页
相似三角形---一线三等角型.doc_第2页
相似三角形---一线三等角型.doc_第3页
相似三角形---一线三等角型.doc_第4页
相似三角形---一线三等角型.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

相似三角形(3)“一线三等角型”教学目标:1、 掌握相似三角形的判定和性质,并能熟练运用其解决重要类型“一线三等角”的类型题.2、 经历运用相似三角形的基础知识解决问题的过程,再次体验图形运动、分类讨论、方程与函数等数学思想.3、 通过问题的解决,体验探究问题成功的乐趣,积极探索,提高学习几何的兴趣.重点:相似三角形的判定性质及其应用.难点:与相似、函数有关的综合性问题的解决技巧和方法.教学方法:启发式教学方法,尝试指导教学法.一、知识梳理: (图1) (图2)(1)如图1:已知三角形ABC中,AB=AC,ADE=B,那么一定存在的相似三角形有(2)如图2:已知三角形ABC中,AB=AC,DEF=B,那么一定存在的相似三角形有二、【例题解析】【例1】如图,在边长为2的等边三角形ABC中,D是BC边上任意一点,AB边上有一点E,AC边上有一点F,使EDF=ABC. 已知BD=1,BE=,求CF的长 【练】1、已知ABC中AB=AC=6、BC=8,BAC=120度,D是BC边上任意一点,AB边上有一点E,AC边上有一点F,使EDF=C. 已知BD=6、BE=4,求:CF的长 2、如图,等边ABC中,边长为6,D是BC上动点,EDF=60(1)求证:BDECFD(2)当BD=,FC=1时,求BE 【例2】在中,是AB上的一点,且,点P是AC上的一个动点,交线段BC于点Q,(不与点B,C重合),已知AP=2,求CQ 【练】在直角三角形ABC中,是AB边上的一点,E是在AC边上的一个动点,(与A,C不重合),与射线BC相交于点F.(1)、当点D是边AB的中点时,求证:(2)、当,求的值 【例3】已知在等腰三角形ABC中,AB=AC,D是BC的中点,EDF=B,求证:BDEDFE. 【练】在边长为4的等边中,D是BC的中点,点E、F分别在AB、AC上(点D不与点、点重合),且保持,连接EF.(1)已知BE=1,DF=2.求DE的值(2)求BED=DEF 【例4】 如图,已知边长为的等边,点在边上,点是射线上一动点,以线段为边向右侧作等边,直线交直线于点,(1)写出图中与相似的三角形;(2)证明其中一对三角形相似;(3)设,求与之间的函数关系式,并写出自变量的取值范围; 【练】 如图,在ABC中,是边上的一个动点,点在边上,且(1) 求证:ABDDCE;(2) 如果,求与的函数解析式,并写出自变量的定义域;(3) 当点是的中点时,试说明ADE是什么三角形,并说明理由 【例5】已知在梯形ABCD中,ADBC,ADBC,且AD5,ABDC2(1)如图8,P为AD上的一点,满足过点D作DGEF于点G,BPCA求证;ABPDPC求AP的长 【练】如图,在梯形中,点为边的中点,以为顶点作,射线交腰于点,射线交腰于点,联结(1)求证:;(2)若是以为腰的等腰三角形,求的长;(3)若,求的长 【家庭作业】1、如图,在中,是边的中点,为边上的一个动点,作,交射线于点设,的面积为(1)求关于的函数关系式,并写出自变量的取值范围;(2)如果以、为顶点的三角形与相似,求的面积. 2、如图,已知在ABC中, AB=AC=6,BC=5,D是AB 上一点,BD=2,E是BC 上一动点,联结DE,并作,射线EF交线段AC于F(1)求证:DBEECF; (2)当F是线段AC中点时,求线段BE的长;(3)联结DF,如果DEF与DBE相似,求FC的长 3、已知在梯形ABCD中,ADBC,ADBC,且BC =6,AB=DC=4,点E是AB的中点 (1)如图,P为BC上的一点,且BP=2求证:BEPCPD; (2)如果点P在BC边上移动(点P与点B、C不重合),且满足EPF=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论