九吨中型载货汽车驱动桥设计【含CAD图纸+说明书完整资料】
收藏
资源目录
压缩包内文档预览:
编号:60172197
类型:共享资源
大小:2.34MB
格式:ZIP
上传时间:2020-03-21
上传人:好资料QQ****51605
认证信息
个人认证
孙**(实名认证)
江苏
IP属地:江苏
50
积分
- 关 键 词:
-
含CAD图纸+说明书完整资料
中型
载货
汽车
驱动
设计
CAD
图纸
说明书
完整
资料
- 资源描述:
-
请充值后下载本设计,,资源目录下的文件,都可以点开预览到,,资料完整,充值下载就能得到。。。【注】:dwg后缀为CAD图,doc,docx为WORD文档,有不明白之处,可咨询QQ:414951605
- 内容简介:
-
本科学生毕业设计九吨中型载货汽车驱动桥设计系部名称: 汽车与交通工程学院 专业班级: 车辆工程 07-9 班 学生姓名: 初晨曦 指导教师: 石美玉 职 称: 教授 黑黑 龙龙 江江 工工 程程 学学 院院二一年六月The Graduation Design for Bachelors DegreeThe Design for Two-stage main reducer Driving Axle of The liberation of carCandidate:chuchenxiSpecialty :Vehicle EngineeringClass :07-9Supervisor:senior experimentalist. ShimeiyuHeilongjiang Institute of Technology2011-06Harbin黑龙江工程学院本科生毕业设计摘 要汽车驱动桥是汽车传动系统的重要组成,承载着汽车的满载荷重及地面经车轮、车架给予的垂直力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩。汽车驱动桥的结构型式和设计参数对汽车动力性、经济性、平顺性、通过性有直接影响。驱动桥的结构型式选择、设计参数选取及设计计算对汽车的整车设计和性能极其重要。本设计首先论述了驱动桥的总体结构,在分析驱动桥各部分结构型式、发展过程及其以往形式的优缺点的基础上,确定了总体设计方案:采用整体式驱动桥,主减速器的减速型式采用双级减速器,主减速器齿轮采用螺旋锥齿轮,差速器采用普通对称式圆锥行星齿轮差速器,半轴采用半浮式型式,桥壳采用钢板冲压焊接式整体式桥壳。在本次设计中,主要完成了双级减速器、圆锥行星齿轮差速器、半浮式半轴的设计和桥壳的校核及 CAD 绘图等工作。通过驱动桥设计可以使学生掌握汽车驱动桥结构设计原则和方法,培养理论联系实际的工作作风。设计与专业关系紧密,可综合利用所学的专业课有汽车构造、汽车设计、机械设计、工程材料和 CAD 绘图等知识。 关键词:双级主减速器,驱动桥,设计,计算,绘图黑龙江工程学院本科生毕业设计ABSTRACTTransmission car is important that bears the full load heavy and the ground by the wheel, the frame, the vertical, horizontal, vertical force and moment, and the impact loads ;drive axle still on the department of the greatest moment. the car turned drive axle the structure of the type and design parameters for the car powerparametres, economy, pingshun, by nature a direct impact. Drive axle the structure of the type parameter selection, were designed and design calculations of the car design and performance is very important. This design first discusses the overall structure of drive axle, drive axle in the analysis of the structural type, the development process and its advantages and disadvantages of the previous form, based on identified program design: using integrated drive axle, main reducer reducer type using two-stage reducer, the main spiral bevel gear reducer gears, differential use of general symmetric cone planetary gear differential, axle semi-floating type, axle housing with integral welded steel stamping axle. In this design, mainly to complete the two-stage reducer, planetary gear differential cone, semi-floating axle half shaft design and Check and CAD drawings, etc.Through drive axle design can help students learn drive axle the structural design principles and methods and develop ties with the theory of the style of work. the design and professional matter closely and comprehensive utilization of specialized course have a car, the car design and construction machinery design, construction materials and cad drawing until knowledge。Keyword:Two-stage main reducer;Driving Axle;Design; Calculation;Drawing黑龙江工程学院本科生毕业设计目 录摘要 Abstract 第 1 章 绪论1 1.1 驱动桥的结构及其种类11.2 设计主要内容 6第 2 章 设计方案的确定72.1 设计题目主要参数72.2 主减速比的计算72.3 主减速器结构方案的确定72.4 差速器的选择 82.5 半轴型式的确定 92.6 桥壳型式的确定92.7 本章小结 9第 3 章 主减速器的基本参数选择与设计计算103.1 主减速器齿轮计算载荷的计算103.2 主减速器齿轮参数的选择113.3 主减速器螺旋锥齿轮的几何尺寸计算与强度计算123.4 主减速器的齿轮材料及热处理153.5 主减速器轴承的计算163.6 主减速器的润滑193.7 本章小结19第 4 章 差速器计算204.1 差速器的作用204.2 对称式圆锥齿轮差速器204.3 本章小结25第 5 章 半轴设计265.1 半轴的设计与计算265.2 本章小结29黑龙江工程学院本科生毕业设计第 6 章 驱动桥桥壳设计306.1 桥壳的受力分析及强度计算 306.2 本章小结38结论38参考文献 39致谢40附录 41本科学生毕业设计九吨中型载货汽车驱动桥设计系部名称: 汽车与交通工程学院 专业班级: 车辆工程07-9班 学生姓名: 初晨曦 指导教师: 石美玉 职 称: 教授 黑 龙 江 工 程 学 院二一年六月The Graduation Design for Bachelors DegreeThe Design for Two-stage main reducer Driving Axle of The liberation of carCandidate:chuchenxiSpecialty :Vehicle EngineeringClass :07-9Supervisor:senior experimentalist. ShimeiyuHeilongjiang Institute of Technology2011-06Harbin黑龙江工程学院本科生毕业设计摘 要汽车驱动桥是汽车传动系统的重要组成,承载着汽车的满载荷重及地面经车轮、车架给予的垂直力、纵向力、横向力及其力矩,以及冲击载荷;驱动桥还传递着传动系中的最大转矩。汽车驱动桥的结构型式和设计参数对汽车动力性、经济性、平顺性、通过性有直接影响。驱动桥的结构型式选择、设计参数选取及设计计算对汽车的整车设计和性能极其重要。本设计首先论述了驱动桥的总体结构,在分析驱动桥各部分结构型式、发展过程及其以往形式的优缺点的基础上,确定了总体设计方案:采用整体式驱动桥,主减速器的减速型式采用双级减速器,主减速器齿轮采用螺旋锥齿轮,差速器采用普通对称式圆锥行星齿轮差速器,半轴采用半浮式型式,桥壳采用钢板冲压焊接式整体式桥壳。在本次设计中,主要完成了双级减速器、圆锥行星齿轮差速器、半浮式半轴的设计和桥壳的校核及CAD绘图等工作。通过驱动桥设计可以使学生掌握汽车驱动桥结构设计原则和方法,培养理论联系实际的工作作风。设计与专业关系紧密,可综合利用所学的专业课有汽车构造、汽车设计、机械设计、工程材料和CAD绘图等知识。 关键词:双级主减速器,驱动桥,设计,计算,绘图ABSTRACTTransmission car is important that bears the full load heavy and the ground by the wheel, the frame, the vertical, horizontal, vertical force and moment, and the impact loads ;drive axle still on the department of the greatest moment. the car turned drive axle the structure of the type and design parameters for the car powerparametres, economy, pingshun, by nature a direct impact. Drive axle the structure of the type parameter selection, were designed and design calculations of the car design and performance is very important. This design first discusses the overall structure of drive axle, drive axle in the analysis of the structural type, the development process and its advantages and disadvantages of the previous form, based on identified program design: using integrated drive axle, main reducer reducer type using two-stage reducer, the main spiral bevel gear reducer gears, differential use of general symmetric cone planetary gear differential, axle semi-floating type, axle housing with integral welded steel stamping axle. In this design, mainly to complete the two-stage reducer, planetary gear differential cone, semi-floating axle half shaft design and Check and CAD drawings, etc.Through drive axle design can help students learn drive axle the structural design principles and methods and develop ties with the theory of the style of work. the design and professional matter closely and comprehensive utilization of specialized course have a car, the car design and construction machinery design, construction materials and cad drawing until knowledge。Keyword:Two-stage main reducer;Driving Axle;Design; Calculation;Drawing目 录摘要 Abstract 第1章 绪论1 1.1 驱动桥的结构及其种类11.2 设计主要内容 6第2章 设计方案的确定72.1设计题目主要参数72.2主减速比的计算72.3主减速器结构方案的确定72.4 差速器的选择 82.5半轴型式的确定 92.6桥壳型式的确定92.7本章小结 9第3章 主减速器的基本参数选择与设计计算103.1主减速器齿轮计算载荷的计算103.2主减速器齿轮参数的选择113.3主减速器螺旋锥齿轮的几何尺寸计算与强度计算123.4主减速器的齿轮材料及热处理153.5主减速器轴承的计算163.6主减速器的润滑193.7本章小结19第4章 差速器计算204.1差速器的作用204.2对称式圆锥齿轮差速器204.3本章小结25第5章 半轴设计265.1半轴的设计与计算265.2本章小结29第6章 驱动桥桥壳设计306.1桥壳的受力分析及强度计算 306.2本章小结38结论38参考文献 39致谢40附录 41本科学生毕业设计九吨中型载货汽车驱动桥设计系部名称: 汽车与交通工程学院 专业班级: 车辆工程 07-9 班 学生姓名: 初晨曦 指导教师: 石美玉 职 称: 教授 黑黑 龙龙 江江 工工 程程 学学 院院二一一年六月黑龙江工程学院本科生毕业设计I目 录摘要 Abstract 第 1 章 绪论1 1.1 驱动桥设计的目的及意义11.2 设计主要内容 6第 2 章 设计方案的确定72.1 设计的主要参数72.2 主减速比的计算72.3 主减速器结构方案的确定72.4 差速器的选择 82.5 半轴型式的确定 92.6 桥壳型式的确定92.7 本章小结 9第 3 章 主减速器的基本参数选择与设计计算103.1 主减速器齿轮计算载荷的计算103.2 主减速器齿轮参数的选择113.3 主减速器螺旋锥齿轮的几何尺寸计算与强度计算123.4 主减速器的齿轮材料及热处理153.5 主减速器轴承的计算163.6 主减速器的润滑193.7 本章小结19第 4 章 差速器计算204.1 差速器的作用204.2 对称式圆锥齿轮差速器204.3 本章小结25第 5 章 半轴设计265.1 半轴的设计与计算26黑龙江工程学院本科生毕业设计II5.2 本章小结29第 6 章 驱动桥桥壳设计306.1 桥壳的受力分析及强度计算 306.2 本章小结38结论38参考文献 39致谢40附录 41黑龙江工程学院本科生毕业设计III黑龙江工程学院本科生毕业设计1第 1 章 绪 论1.1 驱动桥的背景、目的及意义1.1.1 汽车车桥的种类车桥(也称车轴)通过悬架与车架(或承载式车身)相连,它的两端安装车轮,其功用是传递车架(或承载式车身)于车轮之间各方向的作用力及其力矩。根据悬架结构的不同,车桥分为整体式和断开式两种。当采用非独立悬架时,车桥中部是刚性的实心或空心梁,这种车桥即为整体式车桥;断开式车桥为活动关节式结构,与独立悬架配用。根据车桥上车轮的作用,车桥又可分为转向桥、驱动桥、转向驱动桥和支持桥四种类型。其中,转向桥和支持桥都属于从动桥,一般货车多以前桥为转向桥,而后桥或中后两桥为驱动桥。1.1.2 驱动桥的种类及其结构组成驱动桥作为汽车的重要的组成部分处于传动系的末端,其基本功用是增大由传动轴或直接由变速器传来的转矩,将转矩分配给左、右驱动车轮,并使左、石驱动车轮具有汽车行驶运动学所要求的差速功能;同时,驱动桥还要承受作用于路面和车架或车厢之间的铅垂力、纵向力和横向力。在一般的汽车结构中、驱动桥包括主减速器(又称主传动器)、差速器、驱动车轮的传动装置及桥壳等部件如图 1.1 所示。对于各种不同类型和用途的汽车,正确地确定上述机件的结构型式并成功地将它们组合成一个整体驱动桥,乃是设计者必须先解决的问题。驱动桥的结构型式与驱动车轮的悬挂型式密切相关。当驱动车轮采用非独立悬挂时,例如在绝大多数的载货汽车和部分小轿车上,都是采用非断开式驱动桥;当驱动车轮采用独立悬挂时,则配以断开式驱动桥。本次设计采用非独立悬架,整体式驱动桥。这种类型的车一般的设计多采用双级减速器,因为本次设计的汽车选择的是载货汽车,要求较大传动比,它与单级减速器相比,在保证离地间隙的同时可以增大主传动比。黑龙江工程学院本科生毕业设计2 1 2 3 4 5 6 7 8 9 101半轴2圆锥滚子轴承3支承螺栓4主减速器从动锥齿轮5油封6主减速器主动锥齿轮7弹簧座8垫圈9轮毂10调整螺母图 1.1 驱动桥1.1.3 驱动桥结构组成 1主减速器型式及结构主减速器型式及结构 主减速器的结构形式,主要是根据其齿轮类型、主动齿轮和从动齿轮的安装(1)主减速器齿轮的类型 在现代汽车驱动桥中,主减速器采用得最广泛的是螺旋锥齿轮和双曲面齿轮。螺旋锥齿轮如图 1.2(a)所示主、从动齿轮轴线交于一点,交角都采用 90 度。螺旋锥齿轮的重合度大,啮合过程是由点到线,因此,螺旋锥齿轮能承受大的载荷,而且工作平稳,即使在高速运转时其噪声和振动也是很小的。双曲面齿轮如图 1.2(b)所示主、从动齿轮轴线不相交而呈空间交叉。和螺旋锥齿轮相比,双曲面齿轮的优点有:尺寸相同时,双曲面齿轮有更大的传动比。传动比一定时,如果主动齿轮尺寸相同,双曲面齿轮比螺旋锥齿轮有较大轴径,较高的轮齿强度以及较大的主动齿轮轴和轴承刚度。图 1.2 螺旋锥齿轮与双曲面齿轮黑龙江工程学院本科生毕业设计3当传动比一定,主动齿轮尺寸相同时,双曲面从动齿轮的直径较小,有较大的离地间隙。工作过程中,双曲面齿轮副既存在沿齿高方向的侧向滑动,又有沿齿长方向的纵向滑动,这可以改善齿轮的磨合过程,使其具有更高的运转平稳性。双曲面齿轮传动有如下缺点:长方向的纵向滑动使摩擦损失增加,降低了传动效率。齿面间有大的压力和摩擦功,使齿轮抗啮合能力降低。双曲面主动齿轮具有较大的轴向力,使其轴承负荷增大。双曲面齿轮必须采用可改善油膜强度和防刮伤添加剂的特种润滑油。(2)主减速器主动锥齿轮的支承形式及安装方式的选择 现在汽车主减速器主动锥齿轮的支承形式有如下两种:悬臂式 悬臂式支承结构如图 1.3 所示,其特点是在锥齿轮大端一侧采用较长的轴径,其上安装两个圆锥滚子轴承。为了减小悬臂长度 a 和增加两端的距离 b,以改善支承刚度,应使两轴承圆锥滚子向外。悬臂式支承结构简单,支承刚度较差,多用于传递转钜较小的轿车、轻型货车的单级主减速器及许多双级主减速器中。图 1.3锥齿轮悬臂式支承骑马式 骑马式支承结构如图 1.4 所示,其特点是在锥齿轮的两端均有轴承支承,这样可大大增加支承刚度,又使轴承负荷减小,齿轮啮合条件改善,在需要传递较大转矩情况下,最好采用骑马式支承。图 1.4主动锥齿轮骑马式支承黑龙江工程学院本科生毕业设计4(3)从动锥齿轮的支承方式和安装方式的选择 从动锥齿轮的两端支承多采用圆锥滚子轴承,安装时应使它们的圆锥滚子大端相向朝内,而小端相向朝外。为了防止从动锥齿轮在轴向载荷作用下的偏移,圆锥滚子轴承应用两端的调整螺母调整。主减速器从动锥齿轮采用无辐式结构并用细牙螺钉以精度较高的紧配固定在差速器壳的凸缘上5。(4)主减速器的轴承预紧及齿轮啮合调整 支承主减速器的圆锥滚子轴承需预紧以消除安装的原始间隙、磨合期间该间隙的增大及增强支承刚度。分析可知,当轴向力于弹簧变形呈线性关系时,预紧使轴向位移减小至原来的 1/2。预紧力虽然可以增大支承刚度,改善齿轮的啮合和轴承工作条件,但当预紧力超过某一理想值时,轴承寿命会急剧下降。主减速器轴承的预紧值可取为以发动机最大转矩时换算所得轴向力的 30。主动锥齿轮轴承预紧度的调整采用套筒与垫片,从动锥齿轮轴承预紧度的调整采用调整螺母。(5)主减速器的减速形式 主减速器的减速形式分为单级减速、双级减速(如图 2.5)、单级贯通、双级贯通、主减速及轮边减速等。减速形式的选择与汽车的类型及使用条件有关,有时也与制造厂的产品系列及制造条件有关,但它主要取决于由动力性、经济性等整车性能所要求的主减速比 io的大小及驱动桥下的离地间隙、驱动桥的数目及布置形式等。通常单极减速器用于主减速比 io7.6 的各种中小型汽车上。2.差速器型式发展现状差速器型式发展现状 根据汽车行驶运动学的要求和实际的车轮、道路以及它们之间的相互联系表明:汽车在行驶过程中左右车轮在同一时间内所滚过的行程往往是有差别的。例如,拐弯时外侧车轮行驶总要比内侧长。另外,即使汽车作直线行驶,也会由于左右车轮在同一时间内所滚过的路面垂向波形的不同,或由于左右车轮轮胎气压、轮胎负荷、胎面磨损程度的不同以及制造误差等因素引起左右车轮外径不同或滚动半径不相等而要求黑龙江工程学院本科生毕业设计5(a)单级主减速器 (b)双级主减速器图 1.5 主减速器车轮行程不等。在左右车轮行程不等的情况下,如果采用一根整体的驱动车轮轴将动力传给左右车轮,则会由于左右车轮的转速虽然相等而行程却又不同的这一运动学上的矛盾,引起某一驱动车轮产生滑转或滑移。这不仅会是轮胎过早磨、无益地消耗功率和燃料及使驱动车轮轴超载等,还会因为不能按所要求的瞬时中心转向而使操纵性变坏。此外,由于车轮与路面间尤其在转弯时有大的滑转或滑移,易使汽车在转向时失去抗侧滑能力而使稳定性变坏。为了消除由于左右车轮在运动学上的不协调而产生的这些弊病,汽车左右驱动轮间都有差速器,后者保证了汽车驱动桥两侧车轮在行程不等时具有以下不同速度旋转的特性,从而满足了汽车行驶运动学的要求。 差速器的结构型式选择,应从所设计汽车的类型及其使用条件出发,以满足该型汽车在给定的使用条件下的使用性能要求。 差速器的结构型式有多种,大多数汽车都属于公路运输车辆,对于在公路上和市区行驶的汽车来说,由于路面较好,各驱动车轮与路面的附着系数变化很小,因此几乎都采用了结构简单、工作平稳、制造方便、用于公路汽车也很可靠的普通对称式圆锥行星齿轮差速器,作为安装在左、右驱动车轮间的所谓轮间差速器使用;对于经常行驶在泥泞、松软土路或无路地区的越野汽车来说,为了防止因某一侧驱动车轮滑转而陷车,则可采用防滑差速器。后者又分为强制锁止式和自然锁止式两类。自锁式差速器又有多种结构式的高摩擦式和自由轮式的以及变传动比式的。3.半轴型式发展现状半轴型式发展现状驱动车轮的传动装置置位于汽车传动系的末端,其功用是将转矩由差速器半轴齿黑龙江工程学院本科生毕业设计6轮传给驱动车轮。在断开式驱动桥和转向驱动桥中驱动车轮的传动装置包括半轴和万向接传动装置且多采用等速万向节。在一般非断开式驱动桥上,驱动车轮的传动装置就是半轴,这时半轴将差速器半铀齿轮与轮毂连接起来。在装有轮边减速器的驱动桥上,半轴将半轴齿轮与轮边减速器的主动齿轮连接起来。半浮式半轴具有结构简单、质量小、尺寸紧凑、造价低廉等优点。主要用于质量较小,使用条件好,承载负荷也不大的轿车和轻型载货汽车。3/4 浮式半轴,因其侧向力引起弯矩使轴承有歪斜的趋势,这将急剧降低轴承的寿命,故未得到推广。全浮式半轴广泛应用于轻型以上的各类汽车上,本设计采用此种半轴。4.桥壳型式发展现状桥壳型式发展现状 驱动桥桥壳是汽车上的主要零件之一,非断开式驱动桥的桥壳起着支承汽车荷重的作用,并将载荷传给车轮。作用在驱动车轮上的牵引力、制动力、侧向力和垂向力也是经过桥壳传到悬挂及车架或车厢上。因此桥完既是承载件又是传力件,同时它又是主减速器、差速器及驱动车轮传动装置(如半轴)的外壳。在汽车行驶过程中,桥壳承受繁重的载荷,设计时必须考虑在动载荷下桥壳有足够的强度和刚度。为了减小汽车的簧下质量以利于降低动载荷、提高汽车的行驶平顺性,在保证强度和刚度的前提下应力求减小桥壳的质量。桥壳还应结构简单、制造方便以利于降低成本。其结构还应保证主减速器的拆装、调整、维修和保养方便。在选择桥壳的结构型式时,还应考虑汽车的类型、使用要求、制造条件、材料供应等。结构形式分类:可分式、整体式、组合式。按制造工艺不同分类:铸造式强度、刚度较大,但质量大,加工面多,制造工艺复杂,用于中重型货车,本设计采用铸造桥壳。钢板焊接冲压式质量小,材料利用率高,制造成本低,适于大量生产,轿车和中小型货车,部分重型货车。1.2 设计主要内容(1) 驱动桥的主减速器、差速器、半轴、驱动桥桥壳的结构形式选择(2) 主减速器的基本参数选择与设计计算(3) 差速器的设计与计算(4) 半轴的设计与计算(5) 驱动桥桥壳的受力分析及强度计算(6) 绘制装配图及零件图黑龙江工程学院本科生毕业设计7第 2 章 设计方案的确定2.1 设计的主要参数 表 2.1 解放汽车的主要参数发动机最大功率 Pemax kW/np (r/min)99/2700(3000)发动机最大转矩 Temax Nm/nr (r/min)373/1300装载质量 kg5000汽车总质量 kg9445最大车速 km/h70最小离地间隙 mm180轮胎(轮辋宽度-轮辋直径) 英寸9.00202.2 主减速比的计算主减速比对主减速器的结构形式、轮廓尺寸、质量大小以及当变速器处于最高档位时汽车的动力性和燃料经济性都有直接影响。的选择应在汽车总体设计时和传动0i系统的总传动比一起由整车动力计算来确定。可利用在不同的下的功率平衡图来计算对汽车动力性的影响。通过优化设计,对发动机与传动系参数作最佳匹配的方法来选择值,可是汽车获得最佳的动力性和燃料经济性。0i为了得到足够的功率而使最高车速稍有下降,一般选得比最小值大 10%25%,即按下式选择: =0.377=0.3770.471172700/(901)=5.3289327 (2.1)0ighaprivnrmax黑龙江工程学院本科生毕业设计8式中:车轮的滚动半径,=0.0254+(1-)b=0.47117(m),轮辋直径 d=20rrrr2d英寸轮辋宽度 b=9 英寸,=0.05; 变速器最高档传动比 1.0(为直接档)。 ghi2.3 主减速器结构的确定简图(1)主减速器齿轮的类型 螺旋锥齿轮能承受大的载荷,而且工作平稳,即使在高速运转时其噪声和振动也是很小的。本次设计采用螺旋锥齿轮4。(2)主减速器主动锥齿轮的支承形式及安装方式的选择本次设计选用: 主动锥齿轮:悬臂式支撑(圆锥滚子轴承);从动锥齿轮:骑马式支撑(圆锥滚子轴承)。(3)从动锥齿轮的支承方式和安装方式的选择从动锥齿轮的两端支承多采用圆锥滚子轴承,安装时应使它们的圆锥滚子大端相向朝内,而小端相向朝外。为了防止从动锥齿轮在轴向载荷作用下的偏移,圆锥滚子轴承应用两端的调整螺母调整。主减速器从动锥齿轮采用无辐式结构并用细牙螺钉以精度较高的紧配固定在差速器壳的凸缘上5。(4)主减速器的轴承预紧及齿轮啮合调整支承主减速器的圆锥滚子轴承需预紧以消除安装的原始间隙、磨合期间该间隙的增大及增强支承刚度。分析可知,当轴向力于弹簧变形呈线性关系时,预紧使轴向位移减小至原来的 1/2。预紧力虽然可以增大支承刚度,改善齿轮的啮合和轴承工作条件,但当预紧力超过某一理想值时,轴承寿命会急剧下降。主减速器轴承的预紧值可取为以发动机最大转矩时换算所得轴向力的 30。主动锥齿轮轴承预紧度的调整采用波形套筒,从动锥齿轮轴承预紧度的调整采用调整螺母。(5)主减速器的减速形式 主减速器的减速形式分为单级减速、双级减速、单级贯通、双级贯通、主减速及轮边减速等。减速形式的选择与汽车的类型及使用条件有关,有时也与制造厂的产品系列及制造条件有关,但它主要取决于由动力性、经济性等整车性能所要求的主减速比的大小及驱动桥下的离地间隙、驱动桥的数目及布置形式等。本次设计采用双级减速,主要从传动比及它是载重量超过 6t 的重型货车和保证离地间隙上考虑。2.4 差速器的选择黑龙江工程学院本科生毕业设计9差速器的结构型式选择,应从所设计汽车的类型及其使用条件出发,以满足该型汽车在给定的使用条件下的使用性能要求。差速器的结构型式有多种,大多数汽车都属于公路运输车辆,对于在公路上和市区行驶的汽车来说,由于路面较好,各驱动车轮与路面的附着系数变化很小,因此几乎都采用了结构简单、工作平稳、制造方便、用于公路汽车也很可靠的普通对称式圆锥行星齿轮差速器,作为安装在左、右驱动车轮间的所谓轮间差速器使用;对于经常行驶在泥泞、松软土路或无路地区的越野汽车来说,为了防止因某一侧驱动车轮滑转而陷车,则可采用防滑差速器。后者又分为强制锁止式和自然锁止式两类。自锁式差速器又有多种结构式的高摩擦式和自由轮式的以及变传动比式的。但对于本设计的车型来说只选用普通的对称式圆锥行星齿轮差速器即可。本次设计选用:普通锥齿轮式差速器,因为它结构简单,工作平稳可靠,适用于本次设计的汽车驱动桥。2.5 半轴型式的确定3/4 浮式半轴,因其侧向力引起弯矩使轴承有歪斜的趋势,这将急剧降低轴承的寿命,故未得到推广。全浮式半轴广泛应用于轻型以上的各类汽车上。本次设计选择全浮式半轴。2.6 桥壳型式的确定整体式桥壳的特点是将整个桥壳制成一个整体,桥壳犹如一个整体的空心梁,其强度及刚度都比较好。且桥壳与主减速器壳分作两体,主减速器齿轮及差速器均装在独立的主减速壳里,构成单独的总成,调整好后再由桥壳中部前面装入桥壳内,并与桥壳用螺栓固定在一起。使主减速器和差速器的拆装、调整、维修、保养等都十分方便。其主要缺点是桥壳不能做成复杂而理想的断面,壁厚一定,故难于调整应力分布。铸造式桥壳强度、刚度较大多用于重型货车。本次设计驱动桥壳就选用铸造式整体式桥壳。2.6 本章小结本章首先确定了主减速比,以方便确定其它参数。对主减速器型式确定中主要从主减速器齿轮的类型、主减速器主动锥齿轮的支承形式及安装方式的选择、从动锥齿轮的支承方式和安装方式的选择、主减速器的轴承预紧及齿轮啮合调整及主减速器的减速形式上得以确定从而逐步给出驱动桥各个总成的基本结构,分析了驱动桥各总成黑龙江工程学院本科生毕业设计10结构组成。黑龙江工程学院本科生毕业设计10第 3 章 主减速器的基本参数选择与设计计算3.1 主减速齿轮计算载荷的计算通常是将发动机最大转矩配以传动系最低档传动比时和驱动车轮打滑时这两种情况下作用于主减速器从动齿轮上的转矩()的较小者,作为载货汽车计算中用以jjeTT ,验算主减速器从动齿轮最大应力的计算载荷。即 /n=13667.4 () (3.1)TTLejeKiTT0maxmN =25635() (3.2)LBLBrjirGT2mN 式中:发动机最大转矩 373;maxeTmN 由发动机到所计算的主加速器从动齿轮之间的传动系最低档传动比;TLi=5.32893277.64=40.713045828 TLi0i1i maxmax1max 0(cossin)rtgTG friTi根据同类型车型的变速器传动比选取 =7.64。1i 上述传动部分的效率,取=0.9;TT 超载系数,取=1.0;0K0K n驱动桥数目 1; 汽车满载时驱动桥给水平地面的最大负荷,N;但后桥来说还应考虑到2G汽车加速时负荷增大量,可初取:=9.8160%=55593.27N;2G满G 分别为由所计算的主减速器从动齿轮到驱动轮之间的传动效率和减速LBLBi ,比,分别取 0.96 和 1;由式(3.1),式(3.2)求得的计算载荷,是最大转矩而不是正常持续转矩,不能用它作为疲劳损坏依据。对于公路车辆来说,使用条件较非公路用车辆稳定,其正常持续转矩是根据所谓平均牵引力的值来确定的,即主加速器的平均计算转矩为 =4001.843() (3.3)jmT)()(PHRLBLBrTafffnirGGmN 黑龙江工程学院本科生毕业设计11式中:汽车满载总重 94459.81N=92655.45;aG 所牵引的挂车满载总重,N, 仅用于牵引车取=0;TGTG 道路滚动阻力系数,货车通常取 0.0150.020,可初取 =0.018;RfRf 汽车正常使用时的平均爬坡能力系数。货车通常取 0.050.09,可初Hf取=0.07;Hf 汽车性能系数Pf (3.4)(195. 0161001maxeTaPTGGf当 =48.3916 时,取=0。max)(195. 0eTaTGG Pf3.2 主减速器齿轮参数的选择(1)齿数的选择 对于普通双级主减速器,由于第一级的减速比 i01比第二级的 i02小些(通常 i01/ i021.42.0),这时,第一级主动锥齿轮的齿数 z1可选的较大,约在915 范围内。第二级圆柱齿轮传动的齿数和,可选在 6810 的范围内。(2)节圆直径地选择 根据从动锥齿轮的计算转矩(见式 3.2,式 3.3 并取两者中较小的一个为计算依据)按经验公式选出: =206.27254mm (3.5)322jdTKd式中:直径系数,取=1316;2dK2dK计算转矩,取,较小的。jTmN jTjeT计算得,=206.27254mm ,初取=230mm。2d2d (3)齿轮端面模数的选择 选定后,可按式算出从动齿轮大端模数,2d22/ zdm 并用下式校核= 17.45 3tmjmKT(4)齿面宽的选择 汽车主减速器螺旋锥齿轮齿面宽度推荐为:F=0.155=38.75mm,可初取 F =40mm。2d2(5)螺旋锥齿轮螺旋方向 一般情况下主动齿轮为左旋,从动齿轮为右旋,以使二齿轮的轴向力有互相斥离的趋势。(6)螺旋角的选择 螺旋角应足够大以使1.25。因愈大传动就愈平稳噪声FmFm就愈低。螺旋角过大时会引起轴向力亦过大,因此应有一个适当的范围。在一般机械制造用的标准制中,螺旋角推荐用 35。黑龙江工程学院本科生毕业设计123.3 主减速器螺旋锥齿轮的几何尺寸计算与强度计算3.3.1 主减速器螺旋锥齿轮的几何尺寸计算主减速器圆弧齿螺旋锥齿轮的几何尺寸计算 双重收缩齿的优点在于能提高小齿轮粗切工序。双重收缩齿的齿轮参数,其大、小齿轮根锥角的选定是考虑到用一把实用上最大的刀顶距的粗切刀,切出沿齿面宽方向正确的齿厚收缩来。当大齿轮直径大于刀盘半径时采用这种方法是最好的。主减速器锥齿轮的几何尺寸计算见表 3.1。 表 3.1 主减速器锥齿轮的几何尺寸计算用表序号项 目计 算 公 式计 算 结 果1主动齿轮齿数1z112从动齿轮齿数2z233模数m104齿面宽b2b=405工作齿高mHhg117gh6全齿高mHh2=18.88h7法向压力角=22.58轴交角=909节圆直径=dmz1101d=2302d10节锥角arctan121zz=90-21=27.471=62.53211节锥距A =11sin2d=022sin2dA =140.91012周节t=3.1416 mt=31.41613齿顶高21agahhhmkhaa2=11.347mm1ah=5.66mm2ah14齿根高=fhahh =7.533mm1fh=13.22mm2fh15径向间隙c=ghh c=1.8816齿根角0arctanAhff=3.061f=5.362f17面锥角;211fa122fa=32.831a黑龙江工程学院本科生毕业设计13序号项 目计 算 公 式计 算 结 果=65.592a18根锥角=1f11f=2f22f=24.411f=57.172f19齿顶圆直径1111cos2aahdd=2ad221cos2ahd =150.141ad=255.222ad20节锥顶点止齿轮外缘距离1121sin2akhdA212dAk22sinah=119.7661kA=59.9782kA21理论弧齿厚21stsmSsk2=27.38mm1s=10.32mm2s22齿侧间隙B=0.3050.4060.356mm23螺旋角=353.3.2 主减速器螺旋锥齿轮的强度计算在完成主减速器齿轮的几何计算之后,应对其强度进行计算,以保证其有足够的强度和寿命以及安全可靠性地工作。在进行强度计算之前应首先了解齿轮的破坏形式及其影响因素。 螺旋锥齿轮的强度计算:(1)主减速器螺旋锥齿轮的强度计算单位齿长上的圆周力 (3.6)FPp 式中:单位齿长上的圆周力,N/mm;p P作用在齿轮上的圆周力,N,按发动机最大转矩和最大附着力矩两maxeT种载荷工况进行计算;按发动机最大转矩计算时: =1019N/mm (3.7)FdiTpge21013max按最大附着力矩计算 黑龙江工程学院本科生毕业设计14、=771 (3.8)FdrGpr210232/N mm虽然附着力矩产生的 p 很大,但由于发动机最大转矩的限制 p 最大只有 1019 N/mm可知,校核成功。 轮齿的弯曲强度计算。汽车主减速器螺旋锥齿轮轮齿的计算弯曲应力为)/(2mmNw (3.9)JmzFKKKKTvmSjw203102式中:超载系数 1.0;0K 尺寸系数=0.792121;sKsK44 .25m 载荷分配系数 1.11.25;mK 质量系数,对于汽车驱动桥齿轮,档齿轮接触良好、节及径向跳动精vK度高时,取 1;J计算弯曲应力用的综合系数,见图 3.1,。210.3,0.35JJ图 3.1 弯曲计算用综合系数 J作用下: 从动齿轮上的应力=455.37MPa700MPa;jeT2w黑龙江工程学院本科生毕业设计15作用下: 从动齿轮上的应力=125.36MPa210.9MPa;jmT2w当计算主动齿轮时,/Z 与从动相当,而,故,jT12JJ 1w2w1w2w综上所述,故所计算的齿轮满足弯曲强度的要求。汽车主减速器齿轮的损坏形式主要时疲劳损坏,而疲劳寿命主要与日常行驶转矩即平均计算转矩有关,只能用来检验最大应力,不能作为疲劳寿命的计jmTjmjeTT 或算依据。 (2)轮齿的接触强度计算 螺旋锥齿轮齿面的计算接触应力(MPa)为:j (3.10)JFKKKKKTdCvfmsjpj3011102 材料的弹性系数,对于钢制齿轮副取 232.6;pCmmN/21注:=1, =1, =1.11, =10KsKmKsK 表面质量系数,对于制造精确的齿轮可取 1;fK J 计算应力的综合系数,=0.1875,见图 3.2 所示;2J =666.7MPa=1750MPa jmjm=2373.45MPa=2800MPa,故符合要求、校核合理。jeje图 3.2 接触强度计算综合系数 J3.4 主减速器齿轮的材料及热处理汽车驱动桥主减速器的工作相当繁重,与传动系其他齿轮比较,它具有载荷大、工作时间长、载荷变化多、带冲击等特点。其损坏形式主要有齿根弯曲折断、齿面疲黑龙江工程学院本科生毕业设计16劳点蚀(剥落)、磨损和擦伤等。据此对驱动桥齿轮的材料及热处理应有以下要求:(1)具有高的弯曲疲劳强度和接触疲劳强度以及较好的齿面耐磨性,故齿表面应有高的硬度;(2)轮齿芯部应有适当的韧性以适应冲击载荷,避免在冲击载荷下轮齿根部折断;(3)钢材的锻造、切削与热处理等加工性能良好,热处理变形小或变形规律性易控制,以提高产品质量、减少制造成本并降低废品率;(4)选择齿轮材料的合金元素时要适应我国的情况。例如:为了节约镍、铬等我国发展了以锰、钒、硼、钛、钼、硅为主的合金结构钢系统。汽车主减速器和差速器圆锥齿轮与双曲面齿轮目前均用渗碳合金钢制造。常用的钢号,及,在本设计中采用了CrMnMoCrMnTi 22,20MnVBCrNiMo 20,20TiBMn220。CrMnTi20用渗碳合金钢制造齿轮,经渗碳、淬火、回火后,齿轮表面硬度可高达HRC5864, ,而芯部硬度较低,当 m8 时为 HRC3245。对于渗碳深度有如下的规定:当端面模数 m5 时,为 0.91.3mm。由于新齿轮润滑不良,为了防止齿轮在运行初期产生胶合、咬死或擦伤,防止早期磨损,圆锥齿轮与双曲面齿轮副草热处理及精加工后均予以厚度为0.0050.0100.020mm 的磷化处理或镀铜、镀锡。这种表面镀层不应用于补偿零件的公差尺寸,也不能代替润滑。对齿面进行喷丸处理有可能提高寿命达 25。对于滑动速度高的齿轮,为了提高其耐磨性进行渗硫处理。渗硫处理时温度低,故不会引起齿轮变形。渗硫后摩擦系数可显著降低,故即使润滑条件较差,也会防止齿轮咬死、胶合和擦伤等现象产生。3.5 主减速器轴承的计算设计时,通常是先根据主减速器的结构尺寸初步确定轴承的型号,然后验算轴承寿命。影响轴承寿命的主要外因是它的工作载荷及工作条件,因此在验算轴承寿命之前,应先求出作用在齿轮上的轴向力、径向力、圆周力,然后再求出轴承反力,以确定轴承载荷。(1)作用在主减速器主动齿轮上的力齿面宽中点的圆周力 P 为 (3.11)mdTP2式中:T作用在该齿轮上的转矩。主动齿轮的当量转矩;dT1黑龙江工程学院本科生毕业设计17 该齿轮齿面宽中点的分度圆直径。md注:汽车在行驶过程中,由于变速器档位的改变,且发动机也不尽处于最大转矩状态,因此主减速器齿轮的工作转矩处于经常变化中。实践表明,轴承的主要损坏形式是疲劳损伤,所以应按输入的当量转矩进行计算。作用在主减速器主动锥齿轮上的当量转矩可按下式求得:dT1 (3.12)3543223113max)100)100()100(1001TggTggTggefiffiffifTT(式中: 变速器,,档使用率为 1,3,5,16,421,gggfff75; 变速器的传动比为 7.64,4.27,2.61,1.59,1.00;,gggiii, 变速器处于,,档时的发动机转矩利用率421,TTTfff50,60,70,70,60。对于螺旋锥齿轮 =214.51(mm) (3.13)222sinFddm =111.55(mm) (3.14)2121ZZddmm式中:主、从动齿轮齿面宽中点的分度圆直径;mmdd21, 从动齿轮齿面宽F 从动齿轮的节锥角 62.53 ;2计算得 =19063.3NP螺旋锥齿轮的轴向力与径向力主动齿轮的螺旋方向为左;旋转方向为顺时针:=21729(N) (3.16)cossinsin(tancos111PA=5367.54(N) (3.17)sinsincos(tancos111PR 从动齿轮的螺旋方向为右: =6613.27(N) (3.18)cossinsin(tancos222PA =17088.3(N) (3.19)sinsincos(tancos222PR式中:齿廓表面的法向压力角 22.5 ;黑龙江工程学院本科生毕业设计18 主、从动齿轮的节锥角 27.47 ,62.53 。21, (2)主减速器轴承载荷的计算 轴承的轴向载荷,就是上述的齿轮轴向力。而轴承的径向载荷则是上述齿轮径向力、圆周力及轴向力这三者所引起的轴承径向支承反力的向量和。当主减速器的齿轮尺寸、支承型试和轴承位置已确定,并算出齿轮的径向力、轴向力及圆周力以后,则可计算出轴承的径向载荷。悬臂式支承主动锥齿轮的轴承径向载荷 如图 3.3(a) 所示轴承 A、B 的径向载荷为 =10957(N) (3.20)212)5 . 0()(1mAdAbRbPaR =13368.21(N) (3.21)212)5 . 0()(1mBdAcRcPaR (a) (b) 图 3.3 主减速器轴承的布置尺寸其尺寸为:悬臂式支撑的主动齿轮 a=101.5,b=51,c=152.5。式中:齿面宽中点处的圆周力;P 主动齿轮的轴向力;A 主动齿轮的径向力;R 主动齿轮齿面宽中点的分度圆直径。md1双级减速器的从动齿轮的轴承径向载荷轴承 C、D 的径向载荷分别为 =5305.9(N) (3.22)222Re) (5 . 01fPPefRdAAdgRmC =24561.4(N) (3.23)222) (5 . 01kPPckRRcdAAdgRmD式中: 齿面宽中点处的圆周力;P 从动齿轮的轴向力;A黑龙江工程学院本科生毕业设计19 从动齿轮的径向力;R 第二级减速斜齿圆柱齿轮的圆周力、轴向力和径向力;, , RAP 第二级减速主动齿轮的节圆直径; d 从动齿轮齿面宽中点的分度圆直径。md2 (3.24)2dTP (3.25)tanPA (3.26)cos/tanPR 式中:计算转矩;T斜齿圆柱齿轮的螺旋角;法向压力角。3.6 主减速器的润滑 主加速器及差速器的齿轮、轴承以及其他摩擦表面均需润滑,其中尤其应注意主减速器主动锥齿轮的前轴承的润滑,因为其润滑不能靠润滑油的飞溅来实现。为此,通常是在从动齿轮的前端近主动齿轮处的主减速壳的内壁上设一专门的集油槽,将飞溅到壳体内壁上的部分润滑油收集起来再经过近油孔引至前轴承圆锥滚子的小端处,由于圆锥滚子在旋转时的泵油作用,使润滑油由圆锥滚子的下端通向大端,并经前轴承前端的回油孔流回驱动桥壳中间的油盆中,使润滑油得到循环。这样不但可使轴承得到良好的润滑、散热和清洗,而且可以保护前端的油封不被损坏。为了保证有足够的润滑油流进差速器,有的采用专门的倒油匙。 为了防止因温度升高而使主减速器壳和桥壳内部压力增高所引起的漏油,应在主减速器壳上或桥壳上装置通气塞,后者应避开油溅所及之处。加油孔应设置在加油方便之处,油孔位置也决定了油面位置。放油孔应设在桥壳最低处,但也应考虑到汽车在通过障碍时放油塞不易被撞掉。3.7 本章小结本章根据所给参数确定了主减速器的参数,对主减速器齿轮计算载荷的计算、齿轮参数的选择,螺旋锥齿轮的几何尺寸计算与强度计算并对主减速器齿轮的材料及热处理,轴承的预紧,主减速器的润滑等做了必要的交待。选择了机械设计、机械制造的标准参数。黑龙江工程学院本科生毕业设计20第 4 章 差速器设计4.1 差速器的作用根据汽车行驶运动学的要求和实际的车轮、道路的特征,为了消除由于左右车轮在运动学上的不协调而产生的弊病,汽车左右驱动轮间都有差速器,保证了汽车驱动桥两侧车轮在行程不等时具有以下不同速度旋转的特性,从而满足了汽车行驶运动学的要求。差速器作用:分配两输出轴转矩,保证两输出轴有可能以不同角速度转动。 本次设计选用的普通锥齿轮式差速器结构简单,工作平稳可靠,适用于本次设计的汽车驱动桥。4.2 对称式圆锥行星齿轮差速器由于本车为中型载货汽车,则普通的对称式圆锥行星齿轮差速器(如图 4.1)由差速图 4.1 普通的对称式圆锥行星齿轮差速器器左壳为整体式,2 个半轴齿轮,4 个行星齿轮,行星齿轮轴,半轴齿轮以及行星齿轮垫片等组成。由于其结构简单、工作平稳、制造方便、用在公路汽车上也很可靠等优点,所以本设计采用采用该结构。由于差速器壳是装在主减速器从动齿轮上,故在确定主减速器从动齿轮尺寸时,应考虑差速器的安装。差速器的轮廓尺寸也受到从动齿及主动齿轮导向轴承支座的限制。普通圆锥齿轮差速器的工作原理图,如图 4.2 所示。黑龙江工程学院本科生毕业设计21 图 4.2 普通圆锥齿轮差速器的工作原理图4.2.1 差速器齿轮的基本参数选择 (1)行星齿轮数目的选择 重型货车多用 4 个行星齿轮。 (2)行星齿轮球面半径(mm)的确定 圆锥行星齿轮差速器的尺寸通常决定于行BR星齿轮背面的球面半径,它就是行星齿轮的安装尺寸,实际上代表了差速器圆锥BR齿轮的节锥距,在一定程度上表征了差速器的强度。 球面半径可根据经验公式来确定: =4047.47(mm) (4.1)3jBBTKR 圆整取=45.5mm。BR式中:行星齿轮球面半径系数,2.522.99,对于有 4 个行星轮的公路载货汽BK车取小值,取 2.99;确定后,即根据下式预选其节锥距:BR =(0.980.99)=44.5945.045mm,取 45mm (4.2)0ABR (3)行星齿轮与半轴齿轮齿数的选择 为了得到较大的模数从而使齿轮有较高的强度,应使行星齿轮的齿数尽量少,但一般不应少于 10。半轴齿轮的齿数采用1425。半轴齿轮与行星齿轮的齿数比多在 1.52 范围内。取=11,=22。1z2z 在任何圆锥行星齿轮式差速器中,左、右两半轴齿轮的齿数之和,必须RLzz22,能被行星齿轮的数目 n 所整除,否则将不能安装,即应满足:黑龙江工程学院本科生毕业设计22 = =11 (4.3)nzzrL2242222(4)差速器圆锥齿轮模数及半轴齿轮节圆直径的初步确定 先初步求出行星齿轮和半轴齿轮的节锥角:21, (4.4);43.63arctan;565.26arctan122111zzzz式中:行星齿轮和半轴齿轮齿数。21,zz 再根据下式初步求出圆锥齿轮的大端模数: =3.7 (4.5)220110sin2sin2zAzAm取标准模数 4;式中:在前面已初步确定。210,zzA 算出模数后,节圆直径 d 即可由下式求得: (4.6)mmmzdmmmzd88;442121 (5)压力角 目前汽车差速器齿轮大都选用的压力角,齿高系数为 0.8,3022最少齿数可减至 10,并且再小齿轮(行星齿轮)齿顶不变尖的情况下还可由切相修正加大半轴齿轮齿厚,从而使行星齿轮与半轴齿轮趋于等强度。 (6)行星齿轮安装孔直径及其深度 L 的确定 行星齿轮安装孔与行星齿轮名义直径相同,而行星齿轮安装孔的深度 L 就是行星齿轮在其轴上的支承长度。 =35.97(mm) 1 . 1LnlTLc101 . 1302 =32.70 mm (4.7)nlTC 1 . 11030式中:差速器传递的转矩 24942;0TmN n行星齿轮数 4; 行星齿轮支承面中点到锥顶的距离,mm. ,是半轴齿轮齿l25 . 0 dl 2d面宽中点处的直径,l=64mm;228 . 0 dd 支承面的许用挤压应力,取为 69MPa.c4.2.2 差速器齿轮的几何尺寸计算与强度计算表 4.1 为汽车差速器用直齿锥齿轮的几何尺寸计算步骤,表中计算用的弧齿厚系数 见图 4.3。黑龙江工程学院本科生毕业设计23表 4.1 汽车差速器直齿锥齿轮的几何尺寸计算表序号项 目计 算 公 式 及 结 果1行星齿轮齿数111z2半轴齿轮齿数222z3模数4m4齿面宽=13.5mm,取 F=14 m m030. 0AF 5齿工作高=1.6m=6.4mmgh6齿全高h=1.788m+0.051=7.203mm7压力角30228轴交角909节圆直径mmmzdmmmzd88;44212110节锥角;43.63arctan;565.26arctan122111zzzz11节锥距A =11sin2d=45mm022sin2d12周节t=3.1416m=12.5664mm13齿顶高 2.091222210.376.465;0.433.135()ghhhmm hmZZ14齿根高11221.7884.263;1.7887.593hmhmm hmhmm15径向间隙0.1880.0511.179gchhmmm16齿根角121200arctan3.306 ;arctan5.875ohhAA17面锥角0112022132.44 ;66.73618根锥角11122223.259 ;57.36RR19外圆直径01111022222cos77.765;2cos138.79ddhmm ddhmm20节锥顶点至齿轮外缘距离2101110222sin63.11;sin30.19622ddhmmhmm21理论弧齿厚1221213.9088;()tan11.2242tStSmm Shhmmm 22齿侧间隙(高精度)0.189Bmm注:实际齿根高比上表计算值大 0.051mm。黑龙江工程学院本科生毕业设计24图 4.3 汽车差速器直齿锥齿轮切向修正系数(弧齿系数)差速器齿轮主要进行弯曲强度计算,而对于疲劳寿命则不予考虑,这是由于行星齿轮在差速器的工作中经常只起等臂推力杆的作用,仅在左/右驱动车轮有转速差时行星齿轮和半轴齿轮之间有相对滚动的缘故。 汽车差速器齿轮的弯曲应力为 (4.8)JmFzKKKTKvmsw2203102式中:T差速器一个行星齿轮给予一个半轴齿轮的转矩,;mN (4.9)nTTj6 . 0 0.60.63741.3;44jejmemTTTN m Tmm1155. 87 n差速器行星齿轮数目 4; 半轴齿轮齿数 22;2z 超载系数 1.0;0K 质量系数 1.0;vK 尺寸系数;sK40.749125.4smK 载荷分配系数 1.1;mK F齿面宽 22mm; m模数 6;黑龙江工程学院本科生毕业设计25 J计算汽车差速器齿轮弯曲应力的总和系数 0.226,见图 4.4。图 4.4 弯曲计算用综合系数 J 以计算得:jeT=847.02 MPa980 MPaww以计算得:jmT=198.93MPa210.9Mpaww综上所述,差速器齿轮强度满足要求。4.3 本章小结本章首先说明了差速器作用及工作原理,对对称式圆锥行星齿轮差速器的基本参数进行了必要的设计计算,对差速器齿轮的几何尺寸及强度进行了必要的计算,最终确定了所设计差速器的各个参数,取得机械设计、机械制造的标准值并满足了强度计算和校核。黑龙江工程学院本科生毕业设计26第 5 章 半轴设计驱动车轮的传动装置置位于汽车传动系的末端,其功用是将转矩由差速器半轴齿轮传给驱动车轮。在断开式驱动桥和转向驱动桥中驱动车轮的传动装置包括半轴和万向接传动装置且多采用等速万向节。在一般非断开式驱动桥上,驱动车轮的传动装置就是半轴,这时半轴将差速器半铀齿轮与轮教连接起来。在装有轮边减速器的驱动桥上,半轴将半轴齿轮与轮边减速器的主动齿轮连接起来。5.1 半轴的设计与计算半轴的主要尺寸是它的直径,设计计算时首先应合理地确定其计算载荷。半轴计算应考虑到以下三种可能的载荷工况:(1)纵向力(驱动力或制动力)最大时(=),附着系数 取 0.8,没有侧向力2X2X2Z作用;(2)侧向力 Y2 最大时,其最大值发生于侧滑时,为 Z21,侧滑时轮胎与地面的侧向附着系数 1 在计算中取 1.0,没有纵向力作用;(3)垂向力最大时,这发生在汽车以可能的高速通过不平路面时,其值为(Z2-gw)kd,kd 是动载荷系数,这时没有纵向力和侧向力的作用。5.1.1 全浮式半轴的设计计算(1)全浮式半轴在第一种工况下 纵向力应按最大附着力计算,即 =28908.5N (5.1)2222GmXXRL式中:满载静止汽车的驱动桥对水平地面的载荷,取 55593.27N;2G 汽车加速和减速时的质量转移系数,对于后驱动桥可取 1.3;m 轮胎与的地面的附着系数 0.8; 对于驱动车轮来说,当按发动机最大转矩及传动系最低档传动比计算所得的纵向力小于按最大附着力所决定的纵向力时,则按下式计算,即 或=17404.3N (5.2)LX2rTTLeRriTX/max2式中:差速器的转矩分配系数 0.6;黑龙江工程学院本科生毕业设计27 发动机最大转矩 373;maxeTmN 传动系最低档传动比 40.712796;TLi 汽车传动效率 0.9;T 轮胎滚动半径 0.47117m。rr取两者的较小值,所以17404.3NRLXX22转矩为: 8200.4 (5.3)rRrLrXrXT22mN 注:第二种和第三种工况未计算,图 5.1 为全浮式半轴支承示意图。图 5.1 全浮式半轴支承示意图(2)半轴的设计杆部直径的选择 设计时,半浮式半轴杆部直径的初步选择可按下式进行: 取 d=36 (5.4)333)18. 205. 2(196. 010TTd式中:d半轴杆部直径 mm; T半轴的计算转矩,8200;mN 半轴转矩许用应力,MPa。因半轴材料取 40MnB,为 926.1MPa 左右,考虑安全系数在 1.31.6 之间,可取=712MPa; 半轴的扭转应力可由下式计算: =542.1692MPa (5.5)331610dTmmN黑龙江工程学院本科生毕业设计28式中:半轴扭转应力,MPa; T半轴的计算转矩 8200;mN d半轴杆部直径 36mm。 半轴花键的剪切应力为: MPa (5.6)310126.2816500()4ssBAPTDdzL b 半轴花键的挤压应力为: MPa (5.7)310158.61512()()42ccBABAPTDdDdzL式中:T半轴承受的最大转矩 8200;mN 半轴花键外径,57mm;BD 相配的花键孔内径,49.5mm;Ad z花键齿数 18; 花键的工作长度 70mm;pL b花键齿宽,mm,=4.71mm;m21载荷分布的不均匀系数,可取为 0.75。注:花键的选择(30 渐开线)初选分度圆直径 D=54mm,则模数 m=,取标准模数 m=33Dz 半轴的最大扭转角为 (5.8)63. 8101803GJTl式中:T半轴承受的最大转矩,8200;mN 半轴长度 1100mm;l G材料的剪切弹性模量 8.410 N/mm ;42 J半轴横截面的极惯性矩,=717452.3mm 。432dJ45.2.2 半轴的结构设计及材料与热处理 为了使半轴和花键内径不小于其干部直径,常常将加工花键的端部都做得粗些,并使当地减小花键槽的深度,因此花键齿数必须相应地增加。半轴的破坏形式多为扭转疲劳破坏,因此在结构设计上应尽量增大各过渡部分的圆角半径以减小应力集中。黑龙江工程学院本科生毕业设计29为了使半轴杆部和突缘间的过渡圆角都有较大的半径而不致引起其他零件的干涉,常常将半轴突缘用平锻机锻造。本设计半轴采用 40,半轴的热处理采用高频、中频感应淬火。这种处理方法Cr使半轴表面淬硬达,硬化层深约为其半径的 1/3,心部硬度可定为6352HRC;不淬火区(突缘等)的硬度可定在范围内。由于硬化层本3530HRC277248HRC身的强度较高,加之在半轴表面形成大的残余压应力,以及采用喷丸处理、滚压半轴突缘根部过渡圆角等工艺,使半轴的静强度和疲劳强度大为提高,尤其是疲劳强度提高十分显著。5.2 本章小结 本章对半轴做了设计计算。在现代汽车全浮式半轴的结构中,几乎都采用一对圆锥滚子轴承折成轮毂,并且俩轴承的圆锥棍子的锥顶相向安装,在全浮式半轴的设计计算中首先考虑到三种可能的载荷工况,对纵向力(驱动力或制动力)最大时,没有侧向力作用这一工况进行了计算。做了必要的半轴设计计算并进行了校核选取了机械设计、机械制造标准值,对材料和热处理做了必要的说明。黑龙江工程学院本科生毕业设计30第 6 章 驱动桥桥壳 驱动桥桥壳是汽车上的主要零件之一,非断开式驱动桥的桥壳起着支承汽车荷重的作用,并将载荷传给车轮。作用在驱动车轮上的牵引力、制动力、侧向力和垂向力也是经过桥壳传到悬挂及车架或车厢上。因此桥完既是承载件又是传力件,同时它又是主减速器、差速器及驱动车轮传动装置(如半轴)的外壳。 在汽车行驶过程中,桥壳承受繁重的载荷,设计时必须考虑在动载荷下桥壳有足够的强度和刚度。为了减小汽车的簧下质量以利于降低动载荷、提高汽车的行驶平顺性,在保证强度和刚度的前提下应力求减小桥壳的质量。桥壳还应结构简单、制造方便以利于降低成本。其结构还应保证主减速器的拆装、调整、维修和保养方便。在选择桥壳的结构型式时,还应考虑汽车的类型、使用要求、制造条件、材料供应等。6.1 桥壳的受力分析及强度计算6.1.1 桥壳的静弯曲应力计算本次设计选取了同类车型解放 CA1091 型载货货车的驱动桥桥壳。桥壳犹如一空心横梁,两端经轮毂轴承支承于车轮上,在钢板弹簧座处桥壳支承簧上载荷,而沿两侧轮胎中心线,地面给轮胎以反力(双胎时则沿双胎中心线),桥壳则承受此力2/2G与车轮重力之差值,计算简图如图 6.1 所示。wg桥壳按静载荷计算时,在其两钢板弹簧座之间的弯矩为 (6.1)2()14054.0422wGBsMgN m 由弯矩图(图 6.1)可见,桥壳的危险断面通常在钢板弹簧座附近。由于大大地wg小于/2,且设计时不易准确预计,当无数据时可忽略去。2G而静弯曲应力为:=88.45MPa (6.2)vwjWM310式中:危险断面处桥壳的垂向弯曲截面VW黑龙江工程学院本科生毕业设计31;3434(1)158896.732vhDdWWmmD 扭转截面系数。tW3434(1)317793.416tDdWmmD图 6.1 桥壳静弯曲应力的计算简图6.1.2 在不平路面冲击载荷作用下桥壳的强度计算 当汽车高速行驶于不平路面上时,桥壳除承受在静载状态下的那部分载荷外,还承受附加的冲击载荷。这时桥壳载动载荷下的弯曲应力为: =221.12MPa (6.3)wjdwdk式中:动载荷系数,对载货汽车取 2.5;dk 桥壳载静载荷下的弯曲应力,88.45MPa;wj6.1.3 汽车以最大牵引力行驶时的桥壳的强度计算 这时不考虑侧向力。图 6.2 为汽车以最大牵引力行驶时桥壳的受力分析简图。此时作用在左右驱动车轮上除有垂向反力外,尚有切向反力。地面对左右驱动车轮的最大切向反力共为 =45983N (6.4)rTTLeriTP/maxmax式中:发动机的最大转矩 373;maxeTmN 传动系最低档传动比 40.7128;TLi 传动系的传动效率 0.9;T 轮胎的滚动半径 0.47117m。rr黑龙江工程学院本科生毕业设计32 图 6.2 汽车以最大牵引行驶时桥壳的受力分析简图后驱动桥壳在两钢板弹簧座之间的垂向弯曲矩为: =16864.85 (6.5)2222sBmGMvmN 式中:汽车加速行驶时的质量转移系数 1.2; 2m 由于驱动车轮的最大切向反力使桥壳也承受水平方向的弯矩,对于装用普通圆锥齿轮差速器的驱动桥,在两弹簧之间桥壳所受的水平方向的弯矩为: (6.6)max6736.5122hPBsMN m 桥壳还承受因驱动桥传递驱动转矩而引起的反作用力矩。这时在两板簧座间桥壳承受的转矩为: (6.7)mNiTTTTLe82692max式中: 见式(6.4)下的说明。TTLeiT,max 当桥壳在钢板弹簧座附近的危险断面处为圆管断面时,则在该断面处的合成弯矩为: (6.8)22221934.27vhMMMTN m 该危险断面处的合成应力为: (6.9)222138.04 500vhMMMTMPaWW黑龙江工程学院本科生毕业设计33式中:危险断面处的弯曲截面系数 158896.7。W3mm图 6.2 给出了汽车以最大牵引力行驶时后驱动桥桥壳的受力分析简图。 6.1.4 汽车紧急制动时的桥壳强度计算 这时不考虑侧向力。图 6.3 为汽车紧急制动时桥壳的手力分析简图.此时在作用在左右驱动车轮上除有垂向反力外,尚有切向反力,即地面对驱动车轮的制动2/22mG力。因此可求得:2/22mG图 6.3 汽车紧急制动时桥壳的受力分析简图紧急制动时桥壳在两钢板弹簧座之间的垂向弯矩及水平方向弯矩分别为vMhM (6.11)211945.9322vGBsMmN m (6.12)29556.7522hGBsMmN m式中:见式(6.1)说明;sBG,2 汽车制动时的质量转移系数,对于载货汽车的后桥,0.85;mm 驱动车轮与路面的附着系数 0.8。 桥壳在两钢板弹簧的外侧部分同时还承受制动力所引起的转矩 (6.13)217684.652rGTmrN m紧急制动时桥壳在两板簧座附近的危险断面处的合成应力:黑龙江工程学院本科生毕业设计34 (6.14)MPaWTMMWMhv50053.92222 扭转应力 (6.15)MPaWTt40026.35综上所述,满足强度校核要求。6.1.5 汽车受最大侧向力时桥壳的强度计算 当汽车满载、高速急转弯时,则会产生一想当大的且作用于汽车质心处离心力。汽车也会由于其他原因而承受侧向力。当汽车所承受的侧向力达到地面给轮胎的侧向反作用力的最大值即侧向附着力时,则汽车处于侧滑的临界状态,此时没有纵向力作用。侧向力一旦超过侧向附着力,汽车则侧滑。因此汽车驱动桥的侧滑条件是: (6.16)NGYYPRL5479912222式中:驱动桥所受的侧向力;2P 地面给左、右驱动车轮的侧向反作用力;RLYY22, 汽车满载静止于水平面时驱动桥给地面的载荷 45619N;2G 轮胎与地面的侧向附着系数 1.0。1由于汽车产生纯粹的侧滑,因此计算时可以认为地面给轮胎的切向反作用力(如驱动力、制动力)为零。 汽车向右侧滑时,驱动桥侧滑时左、右驱动车轮的支承反力为: NBhGZgL2486)21(122 (6.17)NBhGZgR67383)21(122式中:左、右驱动车轮的支承反力,N;RLZZ22, 汽车满载时的质心高度,0.55m;gh 见式(6.16)下的说明;12,G 驱动车轮的轮距 1.3m。B 钢板弹簧对驱动桥壳的垂向作用力为: NsrhGGTrgL26909/ )(5 . 01222 (6.18)NsrhGGTrgR34847/ )(5 . 01222式中:汽车满载时车厢通过钢板弹簧作用在驱动桥上的垂向总载荷2G14509.874N;黑龙江工程学院本科生毕业设计35 弹簧座上表面离地面高度,0.4720.060+0.020=0.372m;rr 见式(6.17)下的说明;ghG,12 两板簧座中心间的距离 1.19m。s对于半轴为为全浮式的驱动桥,在桥壳两端的半轴套管上,各装着一对轮毂轴承,它们布置在车轮垂向反作用力的作用线的两侧,通常比外轴承离车轮中心线更近。2Z侧滑时内、外轮毂轴承对轮毂的径向支承力如图 6.4 所示,可根据一个车轮的21,SS受力平衡求出。图 6.4 汽车向右侧滑时轮毂轴承对轮毂的径向支承力 S1、S2分析用图(a)轮毂轴承的受力分析用图;(b)桥壳的受力分析用图汽车向右侧滑时左、右车轮轮毂内外轴承的径向支承力分别为: (6.19)NZbabYbarSLLrL8902221 (6.20)NZbaaYbarSLLrL11154222 (6.21)NZbabYbarSRRrR6 .383448221 (6.22)NZbaaYbarSRRrR6 .366060222式中:轮胎的滚动半径 292mm;rr黑龙江工程学院本科生毕业设计36 见图 6.4,其中地面给左右驱动车轮的侧向反作用力RLRLZZYYba2222,Y2L、Y2R可由下式求得:NZZZYLLLL24860 . 122122 (6.23)NZZZYRRRR673830 . 122122轮毂内、外轴承支承中心之间的距离愈大,则由侧滑引起的轴承径向力愈)(ba 小。另外,足够大,也会增加车轮的支承刚度。否则,如果将两轴承的距离缩)(ba 至使两轴承相碰,则车轮的支承刚度会变差而接近于 3/4 浮式半轴的情况。当然,的数值过大也会引起轮毂的宽度及质量的加大而造成布置上的困难。在载货汽)(ba 车的设计中,常取/4。轮毂轴承承受力最大的情况是发生在汽车侧滑时,)(ba rr所以轮轴(即半轴套管)也是在汽车满载侧滑时承受最大的弯矩及应力。半轴套管的危险断面位于轮毂内轴承的里端处,该处弯矩为: (6.24)mNlSlbaSMRR1 .34930)(12式中 为轮毂内轴承支承中心至该轴承内端支承面间的距离。lmm28 弯曲应力 (6.25)MPaDdDMw3 .18310)1 (323443 剪切应力 (6.26)MPadDSR48.49)(4222 合成应力 (6.27)MPaw39.202322 半轴套管处的应力均不超过。MPa490对于钢板冲压焊接整体式桥壳18,多采用或号中碳钢板(化学35,09,16SiVMn40成分控制为的碳和不大于的硫)。 42. 037. 003. 0上述桥壳强度的传统计算方法,只能算出桥壳某一断面的应力平均值,而不能完全反映桥壳上应力及其分布的真实情况。它仅用于对桥壳强度的验算或用作与其他车型的桥壳强度进行比较。而不能用于计算桥壳上某点(例如应力集中点)的真实应力值。使用有限元法对汽车驱动桥壳进行强度分析,只要计算模型简化得合理,受力与约束条件处理得恰当,就可以得到比较理想的计算结果。可以得到比较详细的应力与变形的分布情况,特别是能指出应力集中区域和应力变化趋势,这些都是上述传统计算方黑龙江工程学院本科生毕业设计37法所难以办到的。6.2 本章小结 本章选择了本次设计的驱动桥桥壳,并进行了桥壳的受力分析和强度计算。对静弯曲应力下,不同路面冲击载荷作用下和汽车以最大牵引力行驶时及汽车紧急制动时的四种情况下桥壳受力和强度做了计算。最后指出了这种桥壳设计的弊端,提出利用有限元分析法可进一步完善设计。黑龙江工程学院本科生毕业设计38结 论本次毕业设计中通过认真仔细地分析与研究解放汽车的发展趋势及使用维修方面的知识,熟悉本车的用途,性能及工作条件明确零件在本车中的位置和功用。找出主要技术要求与技术关键。通过对汽车驱动桥的分析,及双级主减速器的功用等几个方面,对对双级主减速器形式的驱动桥进行了初步的研究在设计过程中,运用了大量的汽车原理与计算公式,确定了差速器、减速器。桥壳、半轴等零件的方案。这次毕业设计综合运用 CAD 的运用基本理论,并结合生产实习中学到的实践知识,独立地分析和解决设计绘图问题,初步具备了设计一个中等复杂程度零件的能力。也是熟悉和运用相关手册,图表等技术资料编写技术文件等基本技术的一次实践机会,但在本次的毕业设计中还是发现了许多问题,由于时间的关系,我只是初步的对驱动桥的基本零件进行了设计,由于零件有些部位的精度要求较高所以在制造中会出现较多的废品,在稳定性上还需要提高,但是基本上能够满足批量的生产 。在以后的工作或者生活中要更努力的学习,把大学中学到的东西用到实处,进一步加深自己的专业知识。黑龙江工程学院本科生毕业设计39参考文献1 刘惟信.汽车设计M. 北京:清华大学出版社,20012 王望予.汽车设计M.第 3 版.北京:机械工业出版社,2000 3 成大先机械设计手册M.北京:化学工业出版社,20044 余志生.汽车理论M.第 3 版.北京:机械工业出版社,20005 张洪欣.汽车底盘设计M.北京:机械工业出版社,19986 吴颖 解放 CA1091 维修手册M.北京:机械工业出版社 19957 徐灦. 机械设计手册M. 北京:机械工业出版社,1991.8 王铁,张国忠,周淑文.路面不平度影响下的汽车驱动桥动载荷J.东北大学学报,2003,(1):50-53.9石琴,陈朝阳,钱锋,温千红汽车驱动桥壳模态分析J.上海汽车,1999,(4):1-3,8.10王聪兴,冯茂林. 现代设计方法在驱动桥设计中的应用J.公路与汽运,2004,(4):6-8.11汽车工程手册编辑委员会.汽车工程手册M:设计篇.北京:人民交通出版社,2001.12陈家瑞汽车构造M. 北京:机械工业出版社,200313张学孟汽车齿轮设计(文集)M北京:北京齿轮总厂科协技协,199514周松鹤,徐烈烜工程力学M第 2 版北京: 机械工业出版社,2007.15臧杰,阎岩.汽车构造M北京:机械工业出版社,200516曾范量差速器的工作原理与使用J汽车维修,2005,(9):1517Shichi Sano,Yoshimi furukawa,etc.Four Wheel Steering System with RearWheel Steer Angle:SAE Technical Paper Series,No.860625,2004, (9).18A.Higuchi,Y.Saitoh.Optimal Control of Four Wheel Steering Vteering Vehicle:Vehicle System Dynamic,2000, (12).19Domian,Grumbach.Passenger car transmissions today and in the future;ATZ, Germany,2006,220Leitermann.Modern manual transmissions innovative solutions for a mature technology.VDI Berichte Nr.1943,2006(Germany)黑龙江工程学院本科生毕业设计40致 谢在本次设计过程中,得到了指导老师的悉心指导和帮助,百忙之中,石美玉老师对基础比较薄弱的我们进行了耐心的帮助,几乎把自己的休息时间都用在了指导上,在优先的时间里帮助我们顺利完成本次设计,在此对指导老师表示深深的谢意!老师,您辛苦了!本此设计虽然自己很努力,单却不是自己的功劳,没有老师的帮助,系里对我们的照顾宽容,同学的帮助与支持,就没有本次设计的完成。当完成本次设计的时刻,我的心理不知道是什么滋味,有即将离开生活了 4 年的学校的辛酸与不舍,有马上奔赴工作的兴奋与憧憬。我首先要感谢我的指导老师,没有您的帮助也许不会有我的顺利完成设计。在以后的道路上我会记得所有帮助我的人,我的老师,我的学校。你们是我人生道路上最重要的推动器,我会更加努力,到另一个领域去奋斗拼搏。黑龙江工程学院本科生毕业设计41附 录The present situation of theory research on Drive axle designWith the development of testing technology and improved driving axle in the design process to test the introduction of new technology and a variety of test equipment dedicated to carry out scientific experiments, all aspects of product structure, performance and strength of parts and components, life testing At the same time, extensive use of modern mathematical physics analysis, and assembly of products, parts and components to carry out a full technical analysis, research, and thus drive the development of bridge design theory to scientific experiments and technical analysis is based on the stage. (1) Computer Supported drive axle design and analysis of the theoretical innovation:Computer in the engineering design of the popularization and application, so that the bridge design theory-driven and technology leap in the development of completely different design process. Drive axle structure parameters and the optimization of performance parameters such as selection and matching, the intensity of components accounting and life prediction, simulation of the relevant products or simulation analysis of the art form that is more so on the choice of design and shape, design drawings Drawing will be conducted on the computer. The use of computer tools for analysis, because of its fast computing and large data capacity, we can use more accurate mathematical model of multi-degree of freedom to simulate the driving in a variety of conditions, the use of modern advanced mathematics methods of analysis, can be obtained more accurate results, which analyzed for a variety of programs designed to work creatively to provide a great convenience. At present, due to the external computer equipment and the achievements of human-computer links, can be the computers and logic to determine the capacity, high-capacity data storage and efficient data-processing capacity, the calculation results of dynamic image display function and creativity thinking ability and experience, the realization of human-computer dialogue-style semi-automatic design, or product design expert systems, design automation. The design process can be computer-related products on a large amount of data, data retrieval, on the design of the design of high-speed computing, computer screen displays graphics and design calculations; designers can also be used up pen and direct man-machine dialogue language graphic changes to achieve the best design options, and then by computer graphics equipment line drawings drawn products. This use of computers and external devices 黑龙江工程学院本科生毕业设计42product design methods, collectively referred to as computer-aided design. CAD and CAM will be the future into CADMAT system will show the usefulness of its huge. (2) basic studies to support the drive axle design and analysis of the theoretical innovation: With the computer design of drive axle in the popularization and application, a number of modern methods of mathematical physics and the basis for new theoretical achievements in the automotive design has become more widely used. The design of modern drive axle, in addition to traditional methods, computer-aided design methods, but also the introduction of the most optimal design, reliability, design, finite element analysis of computer simulation or simulation analysis, modal analysis and other modern design methods and analytical tools. Bridge design and analysis of drive to achieve the current high level of theory, especially the past three decades is more than a century of basic science, applied technology, materials and manufacturing processes result of continuous development and progress as well as design, production and use of long-term accumulation of experience. It is based on the production of large-scale practice, the basis of the theory as a guide to reflect the achievements of contemporary science and technology-driven bridge design software and hardware as a means to meet the needs of society for the purpose, through the use of materials, technology, equipment, tools, testing equipment, test the technical and business achievements in the field of management, continuous development and progress. (3) reverse engineering theory and methods widely used: Driving axle in the field of automated manufacturing, and often involve an enormous amount of complex design and manufacturing and testing surface. Under normal circumstances, first of all applications on the computer computer-aided design and manufacturing technology for the design of product model, and then generate code for processing. With the traditional processing model, compared to reverse engineering a CAD model of characterization of non-existing methods of product design, but through a variety of ways from the physical model was taken from the data re-engineering development models of a product amend. Drive the design and manufacture of axle housing is a very typical reverse engineering methods. (4) the application of rapid prototyping technology :Product innovation is designed to give full play to the designers creative imagination, using the technical knowledge and skills to carry out the innovative ideas that the principle of a practice, its aim is to creatively design a rich and advanced new products. In the development of traditional design, the process is divided into program design, technical design, process design. With the development of information technology, product design and development of the scope of the content from the traditional extended to product planning, manufacturing, testing, testing , marketing, as well as the whole process of 黑龙江工程学院本科生毕业设计43recovery. Traditional design, the extension of the product development cycle. Rapid prototyping technology is the complete CAD model solid model layer by layer manufacturing technology, rapid prototyping technology to rid itself of the traditional processing methods, the growth of a new processing method to the complex three-dimensional processing is decomposed into a simple combination of two-dimensional processing. Therefore it does not need the use of traditional machine tools and processing tool, and only 10% of traditional processing methods of a 30% and 20% of the working hours of a 30% of the cost of products will be able to directly create and mold samples. Product innovation in the design and development application of rapid prototyping technology, with modern high-tech tools and technology to transform traditional methods of product design and development, to promote design innovation, product innovation, process innovation and management innovation to form a digital, virtual and intelligent , integrated in order to bring about a revolution in product design and development. (5) the application of concurrent engineering to product management and development: Drive Axle Industries has launched a worldwide competition designed to shorten a new product development time, reduce costs, improve quality, increase market competitiveness, manufacturers a
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。