已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第六章 实数13.1平方根(1)【活动1】学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为25的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?正方形的面积1 91636 边长这个问题实际上是已知一个正数的平方,求这个正数的问题(问题导入)自学教材,回答问题:1. 一般地,如果一个_ 数x的平方等于a,即=a,那么这个_叫做a的_a的算术平方根记为,读作“根号a”,a叫做被开方数规定:_的算术平方根是0. 记作= 2.由以上定义可知如果=a,那么x就叫a的算术平方根吗?判断下列语句是否正确?5是25的算术平方根( ) -6是36的算术平方根( )0.01是0.1的算术平方根( ) -5是-25的算术平方根( )3.3的算术平方根可表示为 ,4的算术平方根可表示为 ,你还能表示出那些数的算术平方根?写在下面,和同座交流一下 【活动2】例:求下列各数的算术平方根: (1)100;(2) ;(3) 0.0001 ; 0; 跟踪训练1、 1.非负数的算术平方根表示为_,225的算术平方根是_,的算术平方根_,0的算术平方根是_2.若是49的算术平方根,则=( )A. 7 B. 7 C. 49 D.49变式训练想一想:下列式子表示什么意思?你能求出它们的值吗? 跟踪训练1. 2.的算术平方根是_,3.若,则的算术平方根是( )A. 49 B. 53 C.7 D .【活动3】思考:4有算术算术平方根吗?为什么?总结:1.正数有 的算术平方根 0的算术平方根是 负数 具有双重非负性2.对于:a 0 0 跟踪训练1下列哪些数有算术平方根?0.03, -, , 0, (-3)2,(-1)32. 下列运算正确的是( )A B CD3.若下列各式有意义,在后面的横线上写出x的取值范围: 5.若,则a= ,b= , 提升能力1.一个自然数的算术平方根为,那么与这个自然数相邻的下一个自然数的算术平方根是_2.一个正方形的面积扩大为原来的4倍,它的边长变为原来的 倍,面积扩大为原来的9倍,它的边长变为原来的 倍,面积扩大为原来的n倍,它的边长变为原来的 倍.3.要使代数式有意义,则的取值范围是( ) A. B. C. D. 4.若,求的值。13.1平方根(2)1、算术平方根的意义及表示方法。2、说出下列各数的算术平方根。100 0.0049 42 【活动1】怎样用两个面积为1的正方形拼成一个面积为2的大正方形动手画一画,若确实不会,则学生间进行交流。问题1:画出拼成的大正方形的草图。问题2:你能求出大正方形的边长吗?(动动脑)讨论:有多大?思考:你对正数a的算术平方根的结果有怎样的认识呢?巩固练习1.你能快速的说出下列各数的算术平方根吗? 121 7 8你能求出7的算术平方根的值吗?它是一个 的数,近似值为 (精确到0.1)2.估算 的大小(全部精确到0.1),你还能估算出哪些数的大小?根据你估算的结果,用“”把这些数字连接起来总结:由上可知:两个非负数中较大的,它的算术平方根 (也较大/较小)比较大小: - 提升能力1.比较与的大小2.若是的整数部分,是的小数部分,试确定、的值。3.某人开辟了一块长方形的荒地,新建一个以环保为主题的公园.已知这块荒地的长是宽的2.5倍,它的面积为60000米2. (1)试估算这块荒地的宽约为多少米?(误差小于1米) (2)若在公园中建一个圆环喷水池,其面积为80米2,该水池的半径是多少?(精确到0.01)13.1平方根(3)知识回顾1.( )2=81 81的算术平方根是 (对算术平方根概念的回忆)2.求下列各数的算术平方根 0.25 225 (-5)2(为例4做准备;体会不同形式的数字的算术平方根的求法;回忆算术平方根的性质)3.求下列各式的值 -(为例5做准备)探究研讨【问题1】如果一个数的平方等于9,这个数是多少?(引导学生和上节课的问题作对比,看两者之间有什么区别和联系)填表x21 9 16 x总结平方根的概念: 例4:根据平方根的概念求下列各数的平方根 100 0.25你还能举出其它的例子吗?【问题2】:求一个数的平方根的运算,叫做开平方。开平方运算和平方运算有什么关系? ,可以用什么方法求一个数的平方根?(认识开平方运算,理解开平方运算和平方运算之间的互逆关系)【问题3】通过对例4的解答,你认为正数的平方根有什么特点?0的平方根呢?负数呢?总结平方根的性质: 正数有 个平方根,它们 0的平方根是 负数 【问题4】用什么方法来表示正数的两个平方根呢?阅读课本P74“归纳”下面的一段话,回答下列问题:在平方根的表示方法中,根号前面为什么会有两个性质符号? 被开方数a为什么要大于或等于0 在数字下面的横线上,表示该数的平方根 400 0.81 2 巩固练习 10的平方根可表示为 ;算术平方根为 ;负的平方根可表示为 (-4)2的平方根可表示为 ;算术平方根可表示为 ;负的平方根克表示为 例5:说出下列各式表示的意义,并求值 - 拓展延伸1、 判断下列说法是否正确 5是25的算术平方根 ( ) 是的一个平方根 ( )的平方根是4 ( ) 0的平方根与算术平方根都是0 ( ) 2、3、若,则,的平方根是能力提升1. x为何值时,下列各式有意义?2. 下列各数有平方根吗?如果有,求出它的平方根,如果没有,说明理由.-64 0 144 (- ) 2 3. 如果一个正数的两个平方根为和,请你求出这个正数4. 解方程 3x2-27=05.讨论:(1)()2,()2; (2),; 通过计算你有什么发现?13.2立方根【学习过程】知识回顾说出下列各式表示的意义,并求值 探究研讨立方根(三次方根):若=则为的立方根, 记为, 读作“三次根号”自主练习:求下列各数的立方根:(1) -216 ; (2)0.064 ; (3) -开立方运算_开立方和立方运算互为先来算一算一些数的立方:23=_ ; (-2)3=_; 0.53=_; (-0.5)3=_; 03=_.4.立方根的性质: 正数的立方根是正数;负数的立方根是负数;0的立方根是0。5.数的立方根用什么符号表示?与平方根有什么区别?随学随练1.8有 个立方根,是 ,可以表示为 ,即: = 2.如果x3=8,那么x= 3.立方根等于本身的数为 4.-3是 的平方根,是 的立方根5.表示,并求出下列数的立方根 -10 0 -0.0086.下列说法中不正确的是( ) A8的立方根是2 B-8的立方根是-2 C 的立方根为2 D 125的立方根为57. 的绝对值是( ) (A) 3 (B)-3 (C) (D) -【活动3】例:说出下列各式表示的意义并求值(1) 2) 3) 4)+【活动4】探究因为所以 因为,所以 你能把发现的结论用含字母a的式子表示出来吗?一般地,巩固练习1. 同学甲在计算时,用了这种方法:=5,你认为这种方法 (正确/不正确),不正确的话怎样改正?同学乙在计算时,用了这样的方法:= =你认为这种方法 (正确/不正确),不正确的话怎样改正? 同学丙认为把立方根的性质=,扩展到平方根中也会有类似的性质,即 =,你认为正确吗?为什么?2. 计算+提升能力1. 当 时,有意义;当 时,有意义2.下列等式成立的是( ) (A) =1 (B) =15 (C) =5 (D)=33.的立方根是 ,的平方根是 ,的立方根是 4.下列计算或命题中正确的有( )4都是64的立方根 =x 的立方根是3 =4(A) 1个 (B) 2个 (C)3个 (D)4个5.求下列各式中的x8x3+125=0 (x+3)3+27=07.已知一个数的两个平方根分别是3a+1和a+11,求这个数的立方根8.计算下列两组式子,看看你会有什么发现? ()3= ( )3= ()3= = = = 你的发现是: 回忆:平方根有类似的性质吗?13.3实数(1)【知识回顾】1、什么是有理数?如何分类?2、是这样的数么?【合作交流,解读探究】【活动1】探究:使用计算器计算,把下列有理数写成小数的形式,你有什么发现? 3 , , , , , 我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即 , , , , ,归纳: 任何一个有理数都可以写成有限小数或无限循环小数的形式。反过来,任何有限小数或无限循环小数也都是有理数.(板书)讨论:是不是有理数呢?为什么?归纳:不是整数,不是有限小数,也不是无限循环小数,所以不是有理数.是无限不循环小数(板书:无限不循环小数).定义:无限不循环小数又叫无理数,也是无理数结论: 有理数和无理数统称为实数 学生举例:有理数 无理数 整理:试探练习,回授调节:1.填空: 在-19,3.878787,1.414,这些数中,有理数是 ; 无理数是 ;2.判断对错:对的画“”,错的画“”.(1)无理数都是无限小数. ( )(2)无限小数都是无理数. ( )(3)是无理数. ( )(4)是无理数. ( )(5)带根号的数都是无理数. ( ) (6)有理数都是实数. ( )【活动2】我们知道,每个有理数都可以用数轴上的点来表示。无理数是否也可以用数轴上的点来表示呢?探究 1.如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O,点O的坐标是多少?O O2.总结: 事实上,每一个无理数都可以用数轴上的_表示出来,这就是说,数轴上的点有些表示_,有些表示_当从有理数扩充到实数以后,实数与数轴上的点就是_的,即每一个实数都可以用数轴上的_来表示;反过来,数轴上的_都是表示一个实数 与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数_讨论: 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?总结 数的相反数是_,这里表示任意_。一个正实数的绝对值是_;一个负实数的绝对值是它的_;0的绝对值是_【学以致用】 1、 的相反数是 ,绝对值 2、绝对值等于 的数是 , 的平方是 3、4、求绝对值5.已知实数、在数轴上的位置如图所示:O化简 6.下列说法正确的有( )不存在绝对值最小的无理数 不存在绝对值最小的实数不存在与本身的算术平方根相等的数 比正实数小的数都是负实数非负实数中最小的数是0A. 2个 B. 3个 C. 4个 D.5个【能力提升 】: 1、 把下列各数填入相应的集合内:有理数集合 无理数集合 整数集合 分数集合 实数集合 2、下列各数中,是无理数的是( )A. B. C. D. 3、已知四个命题,正确的有( )(1)有理数与无理数之和是无理数 有理数与无理数之积是无理数(3)无理数与无理数之积是无理数 无理数与无理数之积是无理数(5)所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。( )A. 1个 B. 2个 C. 3个 D.4个4、若实数满足,则( )A. B. C. D. 【总结反思 】: 无理数的特征:1圆周率及一些含有的数 2开不尽方的数3有一定的规律,但不循环的无限小数注意:带根号的数不一定是无理数13.3实数(2)【知识回顾】1. 每一个无理数都可以用数轴上的 表示出来,这就是说,数轴上的点有些表示有理数,有些表示 .实数与数轴上的点就是 的,即每一个实数都可以用 上的一个点来表示;反过来,数轴上的每一个点都是表示一个 . 2、的相反数是 的相反数是 0的相反数是 = ,= ,0= 【合作交流,解读探究】【活动1】 1、用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律2、用字母表示有理数的加法交换律和结合律3、有理数的混合运算顺序【活动2】例2、计算下列各式的值 (1)(+)- (2)+总结: 实数范围内的运算方法及运算顺序与在有理数范围内都是一样的例3、用精确度计算实数(结果保留两位小数) (1)、+ (2)、总结: 在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算【拓展延伸】1.计算:(1)23; (2).【能力提升】1.计算:充分体现实数之间的各种运算,且正数和0可以进行开平方运算,任意一个数可以进行开立方运算。(2)32.化简:进一步体会数形结合的思想。O(1) 已知实数在数轴上的位置如下,化简(2)、已知、在数轴上如图,化简O 1. 应用:提升学生解决问题的能力。32451如图,平面上有四个点,它们的坐标分别是, .(1)顺次连接A、B、C、D围成的四边形是什么图形?(2)这个四边形的面积是多少? (3)将这个四边形向上平移个单位长度, 四边形的四个顶点的坐标变为多少?第六章 实数复习小结一、 内容整理:1、 想一想,本章我们学了哪些知识?它们之间有什么联系?2、 本章知识结构:二、主要知识回顾: 1、平方根 (1) 如果一个数的平方等于a ,那么这个数叫做a的平方根,记作 ,其中 叫做算术平方根,求一个数 的运算叫做开平方. (2)巩固练习: 求下列各数的平方根和算术平方根 : 2.25 , 361 , ,10 , 0 2、立方根 (1)如果一个数的立方等于a,那么这个数叫做a的 ,记作 。 (2)巩固练习:求下列各数的立方根: , 0.125 ,-1 ,103、实数(1) 叫无理数, 和 统称为实数。(2)实数的分类: (3)巩固练习:把下列各数分别填入相应的集合内: , , - ,- ,0 有理数集合: ;无理数集合: ; 正数集合: ;负数集合: 。二、 知识拓展:1、 填空: (1)一个数的平方等于它本身,这个数是 ;一个数的平方根等于它本身,这个数是 ;一个数的算术平方等于它本身,这个数是 ;(2)一个数的立方等于它本身,这个数是 ;一个数的立方根等于它本身,这个数是 。2、计算: (1) 2-3 ; (2)-+2 (3) 2、 如果a= - -, b= - - ,c=- - ,d=- -+-, 试比较a、b、c、d的大小。3已知2a-1的平方根是3,3a+b-1的平方根是4,c是的整数部分,求a+2b+c的平方根实数全章测试一.填空题1、的算术平方根是_。 2、 _。4、实数a,b,c在数轴上的对应点如图所示化简_。5、若m、n互为相反数,则_。6、若0,则m_,n_。 7、若 ,则a_0。 8.的算术平方根是,平方根是.8的相反数地,绝对值是.9在数轴上,到原点距离为个单位的点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 监控施工报价合同范本
- 群众土地入股合同范本
- 翻新路面施工合同范本
- 离婚合同补充协议模板
- 衣服购买团购合同范本
- 购销协议一般几份合同
- 语文二年级下册18 太空生活趣事多一等奖教案
- 灯杆广告租赁合同范本
- 货物买卖合同解除协议
- 物业水池修理合同范本
- 2025南航招飞英语测试题库及答案
- 对外汉语拼音教学
- GB/T 26081-2022排水工程用球墨铸铁管、管件和附件
- GB/T 30732-2014煤的工业分析方法仪器法
- 12YJ4-1 常用门窗标准图集
- 自然保护区规划研究课件
- 教师资格证考试心理学复习题
- 髋关节Harris评分表
- 学术规范与论文写作课件
- 初中道德与法治人教九年级上册 文明与家园九年级道法导学案《构筑中国价值》
- 托育机构基本情况登记表
评论
0/150
提交评论