湘教版七年级数学上(新)第四章图形的认识导学案7课时.doc_第1页
湘教版七年级数学上(新)第四章图形的认识导学案7课时.doc_第2页
湘教版七年级数学上(新)第四章图形的认识导学案7课时.doc_第3页
湘教版七年级数学上(新)第四章图形的认识导学案7课时.doc_第4页
湘教版七年级数学上(新)第四章图形的认识导学案7课时.doc_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湘教版七年级数学上(新)第四章图形的认识导学案7课时 课题:第四章 立体图形与平面图形 第 1 课时 备课人:学习目标:1认识一些简单的几何体,能识别这些几何体。2能从具体的事物中抽象出几何图形,进一步丰富对几何形状的感谢性认识。学习过程:一、复习回顾下面是我们以前学过的一些图形,你能说出它们的名称吗? 你还知道哪些图形?试着说说看 二、新知探究1、预习思考(一):一个物体具有多种性质,在几何中则着重研究 、 、 我们从形形色色的物体外形中得出的 图形是数学研究的主要对象之一。通过对几何图形的认识,你在复习回顾中遇到的图形 (填是或不是)几何图形。2、预习思考(二):有些几何图形(如长方体、圆柱等)的各部分 ,它们是立体图形。请举出你知道的立体图形 下面几种图形三角形长方形正方体圆圆锥圆柱,其中属于立体图形的是 几何图形来源于生活中各种各样的实物,你能从实物中抽象出几何图形吗?试着完成113的说一说下表是我们常见的立体图形,你能记住它们的名字和特征吗? 名称图例特征与区别柱体圆柱 棱柱 三、应用提高1、请写出下列立体图形的名称。2、完成教材114页的练习1、2四、课堂小结这节课你有什么收获?五、布置作业 二次备课:教学反思: 课题:第四章 直线、射线、线段 第 2、3 课时 备课人:学习目标: 1.能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,能用几何语言描述直线性质;2.会用字母表示直线、射线、线段,会根据语言描述画出图形;重点难点: 理解并掌握直线性质,会用字母表示图形和根据语言描述画出图形;学习过程一、知识链接1在小学已经学过了直线、射线、线段请你画出一条直线、一条射线、一条线段?直线 射线 线段2填写下列表格: 端点个数 延伸方向 能否度量线段 射线 直线 二、自主探究1、直线的性质(1)如果你想将一根细木条固定在墙上,至少需要几个钉子?操作一下,试试看。答: (2)经过一个已知点的直线,可以画多少条直线?请画图说明。答: (3)经过两个已知点画直线,可以画多少条直线?请画图试试。答: 猜想:如果将细木条抽象成直线,将钉子抽象为点,你可以得到什么结论?直线的基本性质:经过两点有 条直线,并且 条直线; 简述为: 举例说明直线的性质在日常生活中的应用:(1) 在挂窗帘时,只要在两边钉两颗钉子扯上线即可,这是因为 (2)建筑工人在砌墙时拉参照线,木工师傅锯木板时,用墨盒弹墨线,都是根据 (3)你还能从生活中举出应用直线的基本性质的例子吗?试试看: 2、直线有两种表示方法:用一个小写字母表示;用两个大写字母表示。平面上一个点与一条直线的位置有什么关系?点在直线上;点在直线外。当两条直线有一个共公点时,我们就称这两条直线相交,这个公共点叫做它们的交点。3、射线和线段的表示方法: 如图。显然,射线和线段都是直线的一部分。图中的线段记作线段AB或线段a;图中的射线记作射线OA或射线m。注意:用两个大写字母表示射线时,表示端点的字母一定要写在前面。思考:直线、射线和线段有什么联系和区别?【课堂练习】1下列给线段取名正确的是 ( ) A线段M B.线段m C.线段Mm D .线段mn 2.如图,若射线AB上有一点C,下列与射线AB是同一条射线的是 ( ) A. 射线BA B. 射线AC C .射线BC D. 射线CB 3.下列语句中正确的个数有 ( )直线MN与直线NM是同一条直线 射线AB与射线BA是同一条射线线段PQ与线段QP是同一条线段 直线上一点把这条直线分成的两部分都是射线.A.1个 B.2个 C.3个 D.4个4.课本119页练习1、2 121页练习1【要点归纳】:通过本节课的学习你有什么收获?【拓展训练】:1.如图,线段AB上有两点C、D,则共有 条线段。 2变形题:往返于甲、乙两地的客车中途要停靠三个车站,有多少种不同的票价?要准备多少种不同的车票?课题:第四章 角 第 4 课时 备课人: 学习目标:(1)理解角的形成,建立几何中角的概念;(2)掌握角的两种定义形式和四种表示方法重、难点:两种定义形式和四种表示方法一、阅读课本第123125页二独立完成下列预习问题:角的概念:观察:如图,一个角,它由哪些基本图形构成?思考:角是由_条_线构成,并且这两条_线具有公共_点。结论:有_端点的两条_线组成的图形叫角。这个_端点叫角的_点,这两条_线叫这个角的_。所以上图中角的顶点是_,角的两边分别是_,_。对“角”的概念还可以这样定义:先画一条射线OA(图),射线OA绕着它的端点O旋转,得到另一条射线OB(图),这两条射线就构成一个_,其中OA叫角的_边,OB叫角的_边。继续旋转,当两条射线OA和OB成一条直线时(图),形成的角叫做_角,继续旋转,当OA与OB重合时,形成的角叫做_角(图)说明: 1、同学们今后学习的角都是指大于0小于180的角.2、平角的两边成一条直线,但不能说直线就是平角。3、周角两边重合成同一条射线,也不能说周角就是射线。角的表示方法:角用符号“”表示,具体表示方法有种:()用三个大写字母表示。如图中的角用三个大写字母表示为_。思考:用三个大写字母表示角的时候, 字母写在中间。()用一个大写字母表示。如图中的角用一个大写字母表示为_。()用希腊字母 、 、 等表示,如图中的角表示为_。()用数字,等来表示。如图中的角表示为_。思考: 右图中的AOB能否用O来表示?三合作交流:1下列图形中有哪些角?请用适当的方法把图中的角表示出来。2小华在练习本上从点O处画出了一些射线OA、OB、OC、OD、OE等,小红很快数出其中每个图形中角的个数。你知道每个图中分别有多少个角吗?请你写出图1和图2中的每一个角。(1).图1以O为端点有2条射线,图中共有_个角,这些角表示_.(2).图2以O为端点有3条射线,图中共有_个角, 这些角表示为_.(3).图3以O为端点有4条射线,图中共有_个角;(4).图4以O为端点有5条射线,图中共有_个角;(5).如果以O为端点有n条射线,则这样的图形共有_个角;课题:第四章 角的度量 第 5 课时 备课人:学习目标:1认识度、分、秒,会进行度、分、秒间单位互化及角的和、差、倍、分计算2、能画出 2. 通过度、分、秒间的互化及角度的简单运算,经历利用已有知识解决新问题的探索过程,培养学生的数感和对数学活动的兴趣重、难点:度、分、秒间单位互化及角的和、差、倍、分计算主学习:一.独立看书P 126 页二.独立完成下列预习作业:11小时= 分。1分钟= 秒。时间的进位制是 进制。2. 3.4小时= 小时 分 秒;3.25小时= 小时 分 秒; 12小时9分36秒= 小时;3.把一个周角分成_等分,每一份所对的角叫做_的角。记作 _; 4.把1度的角_等分,每份就是_的角,记作_;5.把1分的角_等份,每份就是_的角,记作_.即:1 _ , _ 1 _ , _ 6. 1周角=_ ,1平角= _ ,1直角=_ 想一想:角度进位制和其他什么进位制相类似?_. 7角的大小与角两边的长短有关系吗? 。三师生合作交流,解决问题:1、小组讨论,合作交流1 用度、分、秒表示: 0.75 ( ) 16.24 2.小组讨论,合作交流2用度表示: 1800 48 3936 3.小组讨论,合作交流3计算:(1) (2) (3) 4 (4) 7 同步练习1下列说法中正确的是 ( ) A.两条射线所组成的图形叫做角 B.一条直线可以看成一个平角C.角的两边越长,角就越大 D.角的大小和它的度数大小是一致的2已知AOB=120,OC在它的内部,且把AOB分成1:3的两个角,那么AOC的度数为( )A 40 B40或80 C30 D30或903、下列各式中,正确的是:( )A. B. C. D. 45038的一半是 。5.(1)2.5= ; (2)243036= ;(3)30.6=_; (4)306=_; (5)4938+6622= ; (6)180-7919= .6把一个蛋糕n等份,每份的圆心角为30,则n= .7分别确定四个城市相应钟表上时针与分钟所成的角的度数.8计算:(1) (2) (3)22165 (4)42155 ;9.上午9点半时,时针与分针的夹角是多少度?10如图,AB是直线,1=2=5036求3的度数。11.两个角的度数之比为7:3,它们的差为36,求这两个角。教学反思: 课题:第四章 角的度量与运算 第6 课时 备课人: 教学目标 1会进行角的计算 2能用三角尺画特殊角重点:度分秒的换算及计算难点:结合图形进行角的计算学习过程例1计算:(1)把3.38、152.25化为度、分、秒的形式 (2)把281818、781546化为度的形式 点拨:(1)3.38先取整数得3,还剩0.38=0.3860=22.8,取整数22,还剩0.8=0.860=48所以3.38=32248(2)281818=28+(18+ )=28+ =28.305例2计算:(1)984536+712234 (2)783250-514756(3)1123263 (4)176523点拨:(1)度分秒加法:度加度、分加分、秒加秒,计算结束后满60进一。(2)度分秒减法:度减度、分减分、秒减秒,如果不够减向前一位借1,借1度相当60分,借1分相当60秒(3)度分秒分别乘3,计算结束后满60向前一位进1.(4)1763=582,260+52=172,1723=571,160=60, 603=20所以176523=585720探究:画特殊的角30;45;60;75 ;15;105思考:还能画哪些特殊角?例3 已知如图所示:为一条直线,平分,在的内部且,求 的度数分析:由角的倍分关系可设,则;再由角平分线的定义可知,最后利用是平角,可建立方程:,解得;因此,四 课堂检测1. 252548 2、12.39 3、722556+4134 106126147566123414 15744406课题:第四章 补角与余角 第 7 课时 备课人:学习目标1、在具体的现实情境中,认识一个角的余角和补角,掌握余角和补角的性质。2、进一步提高抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想。3、体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步体会数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。学习重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点。学习难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质一、学前准备 探究1:(1)30+60= , 25+65= , 2220+6740= .(2)如图,已知1=61,2=29,那么1+2= 。(3如 图 ,已知点A、O、B在一直线上 ,COD=90,那么1+2= 互为余角的定义: 探究2:(1)如图3,已知1=62,2=118,那么 1+2 (2)如图4,A、O、B在同一直线上,1+2= 互为补角的定义: 问题1:以上定义中的“互为”是什么意思? 问题2:若1+2 +3 =180,那么1、2、3互为补角吗? 练习: 填表:aa的余角a的补角532776223x结论:同一个锐角的补角比它的余角大 (2)填空:70的余角是 ,补角是 。a(a 90)的余角是 ,它的补角是 。重要提醒:一个角的余角和补角表示法:锐角a的余角是(90 a ) a的补角是(180 a )探究3:1. 1 +2=90, 1+3=90,则2与3相等吗? 若1 +2=90, 3+4=90且1=3,则2与4相等吗? 问:从中发现了什么?结论: 。2.如图1 与2互余, 与互余 ,如果1,那么2与相等吗?为什么?结论: 。3. 1 +2=180, 1+3=180,则2与3相等吗? 若1 +2=180, 3+4=180且1=3,则2与4相等吗? 问:从中发现了什么?结论: 。例1:若一个角的补角等于它的余角4倍,求这个角的度数。例2:如图,AOCCOB90,DOE90,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论