相关资料.doc

定梁式数控雕刻机机械结构设计【14张CAD图纸和说明书】

收藏

资源目录
跳过导航链接。
定梁式数控雕刻机机械结构设计【14张CAD图纸和说明书】.zip
设计说明书.doc---(点击预览)
相关资料
X向导轨.dwg
X向滑板.dwg
丝杠支承滑块.dwg
主轴端盖.dwg
主轴轴套.dwg
工作台布局示意图.dwg
机床初步布局示意图.dwg
横梁导轨布局示意图.dwg
电主轴结构图.dwg
衬套.dwg
装配图.dwg
轴承座1.dwg
轴承座2.dwg
龙门式布局示意图.dwg
压缩包内文档预览:(预览前20页/共45页)
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:6038812    类型:共享资源    大小:2.39MB    格式:ZIP    上传时间:2017-10-26 上传人:俊****计 IP属地:江苏
40
积分
关 键 词:
数控 雕刻机 机械 结构设计 14张 cad 图纸 说明书
资源描述:

摘  要

当今世界,现代化工业技术飞速发展,日新月异。在机械制造领域,人们对于机械零件加工的质量、精度和效率等的要求也越来越高。因此,对于加工零件所需要的机床的跟新换代也与日俱增。在此趋势的推动下,数控机床的结构优化改造设计变得非常重大。大批的数控机床正如雨后春笋般进军机械制造业。比如数控雕刻机在模具加工、PCB电路板以及广告招牌等领域发挥着重要作用。

本文主要调查和研究了定梁式数控雕刻机在国内外发展状况以及其在未来制造业的前景,并对数控雕刻机的结构做了研究和优化设计,主要包含了数控机床的总体布局方案设计、机床主传动系统设计、(电主轴或电机直联传动结构)、机床进给运动系统(导轨及滚珠丝杠)的结构设计、相关滚珠丝杠的计算选型及校核、轴承和电机的计算及选型,最后利用CAD绘图软件绘制了机床的总装配图、部分零件图及相关结构示意图。


关键词:数控雕刻机;电主轴;导轨;滚珠丝杠;


Abstract

In today's world, modern industrial technology are rapidly developing with each passing day. In the field of machinery manufacturing, people are increasingly high requirements for the quality, accuracy and efficiency of the machine parts. Therefore, for a machine with a new generation of machined parts is also increasing. In this trend, driven by CNC machine tools transform the structure optimization design becomes very significant. A large number of CNC machine tools just mushroomed into the machinery manufacturing industry. Such as CNC engraving machine plays an important role in the field of mold, PCB circuit board, and advertising signs.

In this paper, surveys and studies have been done of the fixed beam CNC engraving machine CNC machine tools development at home and abroad as well as its outlook for manufacturing in the future, and the structure of the CNC machine to do the research and design optimization, the overall layout design machine main drive system design (the electric spindle or motor directly connected to the transmission structure), machine tool feed motion systems (rail and ball screw) structural design, the ball screw calculation of selection and check the bearing and motor the calculation and selection, and finally the use of CAD drawing software to draw the general assembly drawing of the machine, some parts diagram and structure diagram.


Key words: CNC engraving and milling machine;spindle;rail;ball screw


目  录

摘  要 III

ABSTRACT IV

目  录 V

1 绪论 1

  1.1 数控雕刻技术的产生 1

  1.2 本课题研究的内容及意义 1

  1.3 国内外研究状况及其发展趋势 1

  1.4 雕刻机机械系统设计的主要技术指标 4

2 雕刻机总体布局方案设计 5

  2.1 数控雕刻机布局要求及影响因素 5

  2.2 数控雕刻机总体结构布局 6

  2.3 数控雕刻机结构的改良对比 7

  2.4 工作台的结构设计 9

  2.5 本章小结 10

3 主传动系统的方案设计 11

  3.1 主运动传动系统设计 11

  3.2 电主轴 12

    3.2.1  电主轴的介绍 12

    3.2.2  电主轴的结构及其优点 12

    3.2.3  电主轴的安装 14

  3.3 本章小结 14

4 机床进给系统方案设计 15

  4.1 进给传动系统选择 15

    4.1.1  进给传动系统的要求 15

    4.1.2  进给传动系统的基本形式 15

    4.1.3  以上几种传动方案的简介和比较 15

  4.2 滚珠丝杠系统 17

    4.2.1  滚珠丝杠副的选择 17

    4.2.2  滚珠丝杠支承结构 17

    4.2.3  支承轴承的选择 19

    4.2.4  滚珠丝杠副的制动装置 19

    4.2.5  步进电机与进给丝杠的联结结构 19

  4.3 滚动导轨的安装定位 20

  4.4 本章小结 20

5 主传动及X向进给系统部分零件计算和校核 21

  5.1 主传动零部件计算及校核 21

    5.1.1  主轴参数设计 21

    5.1.2  主轴系统铣削力的计算 21

    5.1.3  滚珠丝杠副参数的计算选择 22

    5.1.4  滚珠丝杠副的强度校核 25

    5.1.5  伺服电机参数计算和型号选择 26

  5.2 X向进给系统零部件计算及校核 28

    5.2.1  X向丝杠的选型及校核 28

    5.2.2  丝杠轴承的选择及计算 29

  5.3 本章小结 30

6 展望和结论 31

致  谢 32

参考文献 33

附  录 34



1 绪论

1.1 数控雕刻技术的产生

早在二十世纪中叶以前,人们对于零件打孔和铣削的加工手段主要是靠人工作坊式的手动和半自动的金属冲、钻、压等机床设备。不但厚重、笨、大,而且性能差、速度慢、功能少、效率低。自从60年代初以来,就工业发达国家的许多PCB(印刷电路板)加工设备设计而言,为了使产品具有强劲的市场竞争力以满足人们的要求,生产厂家纷纷投入了较大的人力、物力和财力,就PCB加工设备的设计过程中存在的问题做了深入研究,最后在60年代初获得了较大的成果。

随后雕刻机、雕铣机、加工中心等一系列数控机床便如雨后春笋般应运而生。跟据相关资料载述,世上首台CNC机床的问世,是1952年在芝加哥机床展览会上出现的,而针对于PCB工业加工的CNC机床大概晚于纯金属切削加工机床10年左右,它是60年代初期出现的,从此便开创了数控雕刻技术的新纪元[1]。

1.2 本课题研究的内容及意义

    目前,数控雕刻机主要是用于各类材料的文字雕刻、印刷电路板的制作、各类印章铭牌的制作、艺术浮雕及小型模具加工(如冲压模、五金模、塑料模、玻璃模)以及零件的精密雕刻。

由于模具产业和美术品制造业的日益发展,纵观全球,市场上对于数控雕刻机的需求逐步扩大,首先是相对高端的数控雕刻中心,其需求量最为庞大。数控雕刻机已成为模具制造行业必不可少的加工机床装备。  

数控雕刻机的机械加工精度高、刚性强,它的数控系统还拥有抗干扰特性,是含有高新科学技术的一种加工设备,其机电一体化水平先进。同时,它价格适宜,被认为是低投入高回报的一类加工机床。就当今制造类行业来讲,尤其在复杂型腔模的精细加工中,CNC雕刻机的加工精度高、速度快、表面质量好,能够代替价格相对昂贵的加工中心的机加工。   CNC雕刻机一般采用滚珠丝杠副和直线导轨来作为各向运动的实现元件,它的数控系统功能全面,采用半闭环伺服电机驱动,其加工精度可达0.001 毫米,定位精度和重复定位精度都优于普通的数控机床的加工精度。另外,它的加工范围大,性价比较高,能够普遍用于轻型金属构件的精密加工和模具型腔的曲面加工,也可以用来加工各类工艺品和非金属制品。

目前,虽然数控雕刻机的技术已经相对比较成熟,生产的产品性能也日渐趋于稳定。但是一般都体积庞大,结构复杂,价格昂贵[2]。

本课题研究的数控雕刻机是一种小型三轴联动定梁式数控雕刻机床。它可以完成一般的轻型零件及电子电路板的加工,也可以进行透刻轮廓等加工。该机床具有占地面积小,加工幅面较大等特点。根据数控雕刻机的自身特点,可以将其分为机械系统、数控系统和软件系统,本文着重研究机械系统设计过程。完成数控雕刻机机械结构总体方案设计及零部件的选型计算、结构强度校核,并绘制装配图和零件图纸。

1.3 国内外研究状况及其发展趋势

伴随着模具业、广告招牌业、家具制造业的发展日趋扩大,尤其在模具行业中对零件表面的加工,要求不断提高。再加上电火花加工存在不足,近年来数控雕刻机在国内有了突破性的发展。

CNC雕刻机相对于一般加工机床有着技术上的优势,而且它的价格合理,现已成为了市场上电子零配件的制造、五金产品、家具制造、小型精密模具制造等行业加工机床工具。另外,数控雕刻机也逐步被投入如:大功率LED铝基板、金属电极、美术工艺礼品、眼镜框架加工等领域。由于数控雕刻机的应用领域日益拓展,它的市场规模也不断扩大。根据罗百辉的调查显示,2002~2006年,数控雕刻机被用于模具加工、家具制造行业还是小批量,是它导入市场的阶段。


内容简介:
编 号无锡太湖学院毕 业 设 计 ( 论 文 )相 关 资 料题目: 定梁式数控雕刻机机械结构设计 信 机 系 机 械 工 程 及 自 动 化 专 业学 号: 0923164学生姓名: 范 俊 指导教师: 黄敏 (职称:副教授)(职称: )2013 年 5 月 25 日目 录一、毕业设计(论文)开题报告二、毕业设计(论文)外文资料翻译及原文三、学生“毕业论文(论文)计划、进度、检查及落实表”四、实习鉴定表无锡太湖学院毕 业 设 计 ( 论 文 )开 题 报 告题目: 定梁式数控雕刻机机械结构设计 信 机 系 机 械 工 程 及 自 动 化 专 业学 号: 0923164 学生姓名: 范 俊 指导教师: 黄敏 (职称:副教授)(职称: )2012 年 11 月 25 日 课题来源自拟。科学依据(包括课题的科学意义;国内外研究概况、水平和发展趋势;应用前景等)(1)课题科学意义数控雕刻机是一种具备雕刻加工功能的数控机床。大都认为雕刻机是使用小刀具、大功率和高速主轴电机的数控铣床。雕刻机的优势在雕刻,对零件表面的精细加工,是一种高效、高精度的数控机床。随着模具工业和工艺美术品制造业的快速发展,国内外市场对数控雕刻机的需求不断扩大,特别是高端的数控雕铣中心,需求更为旺盛。在制鞋工业、运动器材工业、汽车轮胎制造业等工业领域有广泛的应用,特别是模具制造业必不可少的机床装备。(2)数控雕刻机的研究状况及其发展前景数控雕刻机以自身所具有的技术优势,加上合理的价格,已成为我国消费类电子零配件制造、小型精密模具制造、PCB 电路板、五金制品、家具制造等行业重要的机床工具。另外,在 LED 铝基板、工艺礼品、金属电极、金属眼镜框加工等领域,也开始使用数控雕刻机。随着数控雕刻机应用领域的不断拓展,其市场规模也不断扩大。据罗百辉调查,20022006 年,数控雕刻机小批量应用于模具加工、家具制造行业,处于市场导入期。随着数控雕刻机技术的不断成熟和价格趋于合理,其性价比逐渐得到业界的认可,市场快速扩大。进入 2007 年我国数控雕刻机产销量突破 10000 台,产值超过 15 亿元,标志着国内数控雕刻机产业进入高速成长期;从 20072010 年,在模具加工、家具与五金制造等行业需求继续快速增长的同时,由智能手机、平板电脑、电子书、GPS等带动的消费类电子零配件制造业的需求异军突起,推动数控雕刻机行业迅速发展,2010 年国内数控雕刻机产量已突破 4.5 万台。随着下游各应用领域对产品加工过程中的高精密、高效率、低耗能、低耗材的要求不断提升,数控雕刻机自身技术不断成熟,下游新兴应用领域不断涌现,国内人工成本的不断增长,原有老旧设备的更新换代等等,都将对数控雕刻机市场起到积极的推动作用。未来数控雕刻机行业将持续高速增长。结合各下游行业十二五规划制定的发展目标,罗百辉预计到 2015 年全国数控雕刻机产销量将达到 12 万台。 在市场结构方面,消费类电子产品零配件制造、模具制造、五金制品及家具制造等四大行业仍将是数控雕刻机的主要应用领域。其中,随着触摸屏手机、平板电脑的渗透率不断提高,未来消费类电子产品零配件制造行业对数控雕刻机需求将持续快速增长,到 2015年,仅消费类电子产品零配件制造行业,对数控雕刻机需求量就将达到 38000 台。研究内容 了解数控雕刻机的工作原理,国内外的研究发展现状; 完成数控雕刻机机械总体方案设计; 完成零部件的选型计算、结构强度校核; 熟练掌握有关计算机绘图软件,并绘制装配图和零件图纸,折合 A0 不少于 3 张; 完成设计说明书的撰写,并翻译外文资料 1 篇。拟采取的研究方法、技术路线、实验方案及可行性分析到数控雕刻机加工工厂参观,增强对雕刻机系统和结构的认识,构思机床外部结构。去学校图书馆或上网查找有关数控雕刻机改造的书籍,再对其系统内部零件进行设计:机床主传动系统的设计,机床进给系统的设计,机床主要零部件的设计计算。查阅有关雕刻机的资料,对其主要零件进行校核。撰写设计书名书,完成雕刻机下体机装配图及各主要零件图的绘制。研究计划及预期成果研究计划:2012 年 11 月 17 日-2013 年 1 月 13 日:按照任务书要求查阅论文相关参考资料,填写毕业设计开题报告书,学习并翻译一篇与毕业设计相关的英文材料。2013 年 1 月 15 日-2013 年 3 月 5 日:拟好论文框架,写好第一章绪论,并构思所需要的图纸。2013 年 3 月 8 日-2013 年 3 月 12 日:按照要求修改毕业设计开题报告。2013 年 3 月 14 日-2013 年 4 月 11 日:完成雕刻机机械结构设计,完成机床主传 动系统、进给系统的设计选择及机床主要零部件 的设计计算,完成所需图纸。2013 年 4 月 12 日-2013 年 4 月 25 日:完成有关零部件的选型及校核计算,并校验图纸。2013 年 4 月 26 日-2013 年 5 月 20 日:毕业论文撰写和修改工作。预期成果:数控雕刻机机械结构总体装配图及主要零部件图,完成设计说明书的撰写。特色或创新之处 机床底座采用铸造结构,确保了整体的稳定性。 机床的三轴运动形式采用刀具 Y/Z 轴进给运动,工作台作 X 轴进给运动的定梁式结构,增强了加工的稳定性,保证了加工精度。 机床横梁导轨的布局采用垂直向的空间式结构,确保了加工的平稳和精度。已具备的条件和尚需解决的问题 现已查阅到数控雕刻机改造的相关资料。 需要查阅课本和相关资料,相互比较,以选取最佳方案。英文原文Research on a Novel Parallel Engraving Machine and its Key TechnologiesAbstract: In order to compensate the disadvantages of conventional engraving machine and exert the advantages of parallel mechanism, a novel parallel engraving machine is presented and some key technologies are studied in this paper. Mechanism performances are analyzed in terms of the first and the second order influence coefficient matrix firstly. So the sizes of mechanism, which are better for all the performance indices of both kinematics and dynamics, can be confirmed and the restriction due to considering only the first order influence coefficient matrix in the past is broken through. Therefore, the theory basis for designing the mechanism size of novel 指导教师意见指导教师签名:年 月 日教研室(学科组、研究所)意见教研室主任签名:年 月 日系意见主管领导签名:年 月 日engraving machine with better performances is provided. In addition, method for tool path planning and control technology for engraving force is also studied in the paper. The proposed algorithm for tool path planning on curved surface can be applied to arbitrary spacial curved surface in theory, control technology for engraving force based on fuzzy neural network (FNN) has well adaptability to the changing environment. Research on teleoperation for parallel engraving machine based on B / S architecture resolves the key problems such as control mode, sharing mechanism for multiuser, real-time control for engraving job and real-time transmission for video information. Simulation results further show the feasibility and validity of the proposed methods.Keywords: parallel mechanism, engraving machine, influence coefficient, performance indices, tool path planning, force control, fuzzy neural network, teleoperation1 IntroductionConventional computer engraving machine has played an important role in industries such as machinery machining, printing and dyeing and entertainment, but it has the inherent disadvantages such as cutting tool can be fed only along the fixed guideway, lower degree-of-freedom (DOF) of cutting tool, lower flexibility and mobility for machining etc. Parallel mechanism has the merits such as high mechanical stiffness, high load capacity, high precision, good dynamic performance etc (Zhen, H.; Ling-fu, K. & Yue-fa, F., 1997). According to the characteristics of parallel mechanism, it has been a hot research topic to apply parallel mechanism to the domain of future machining. By applying parallel mechanism to engraving domain, its inherent advantages can be fully exerted and the disadvantages of conventional engraving machine can be overcome or compensated. But as the special structure of parallel mechanism, the related theory and technology during its engraving is very different from that of conventional engraving machine, and it is a undeveloped research topic by now. In addition, with the development of computer network technology, the new concept and method such as network machining and manufacturing has become hot research topic (GQ, Huang & K.L, Mak., 2001; Taylor, K. & Dalton, B., 2000; Ying-xue, Y. & Yong, L., 1999). A novel parallel engraving machine with six-axis linkage is proposed in this paper, which uses the 6-PUS parallel mechanism with 6-DOF as the prototype, and some key technologies such as size design, tool path planning, engraving force control and teleoperation are studied on this basis.2. Confirming of mechanism type and engraving machines size2.1 Selection of mechanism and coordinate systemThe selection of mechanism type is the first step for designing novel engraving machine, the following reasons make us select the 6-PUS parallel mechanism for designing our engraving machine. Comparing with traditional mechanism, 6-PUS parallel mechanism uses base platform, three uprights layout and high rigidity framework structure and has the merits such as high modularization, high accuracy and low cost. Itsmodel is shown in Fig.1.Fig. 1. The model of 6-PUS parallel mechanismAs shown in Fig.1, 6-PUS parallel mechanism consists of base platform, dynamic platform and 6 branch chains with same structure, every branch joins with base platform through prismatic pairs (P), slider of prismatic pairs joins with up end of the fixed length link through universal joint (U), down end of the fixed length link joins with dynamic platform through sphere hinge (S), so it is called 6-PUS parallel mechanism. The coordinate system of 6-PUS parallel engraving mechanism is shown in Fig. 2. In Fig.2, the geometry centers of base platform and dynamic platform plane are supposed as OB and op respectively. In every branch, the centers of prismatic pairs, universal joint and sphere hinge are marked with Ai, Bi, and Ci (i = 1,2, ., 6) respectively. Coordinate system OB-XBYBZB is fixed on base platform, taking B as briefly. The origin of B lies on geometry center of base platforms up plane, axis ZB is vertical with base platform and directs to up, axis YB directs to angle bisector of the first and second branch lead screw center line, and axis XB can be determined with right-hand rule. Supposing the coordinate system set on dynamic platform is op-xpypzp, taking P as briefly, its origin lies on geometry center of dynamic platform, the initial state of dynamic platform system is consistent with that of base platform system completely. Supposing the coordinate of op is (0,0, Z) in B, this configuration without relative rotation to every axis is the initial configuration of this mechanism, and Z changing with mechanisms size. On the basis of coordinate system mentioned, we use influence coefficient theory and the actual parameters of this mechanism to calculate the first and the second order influence coefficient matrix of every branch under different configuration. Then, we can get the first and the second order integrated influence coefficient matrix H of the whole mechanism. 和The significance and detailed solution process for influence coefficient matrix is omitted here, for more information please refer (Zhen, H.; Ling-fu, K. & Yue-fa, F., 1997).Fig. 2. Coordinate system of 6-PUS parallel engraving mechanism2.2 Mechanism performance analysis based on influence coefficient matrix The performance of engraving machine will change with its size. To find out the better size for all the performance indices of both kinematics and dynamics, we obtain a group of mechanisms by changing its parameters. These mechanisms length of fixed length links (L) range between 45cm and 55cm (step is 1cm), radius of dynamic platform (R) range between 10cm and 20cm (Step is 1cm). Other parameters of the mechanism is unchanging, so we get 121 mechanisms totally. Taking these mechanisms as research object, we confirm the sample point for every mechanism in its workspace with algorithm PerformanceAnalysis, then calculate the first and the second order influence coefficient matrix in every point. Furthermore, calculate all the performance indices in every sample point and draw all the global performance atlas of 121 mechanisms ultimately. To describe conveniently, we abbreviate the first and the second order integrated influence coefficient matrix Hq to G and H, and use G, H and G, H as the angular velocity submatrix and linear velocity submatrix of the first and the second order integrated influence coefficient matrix respectively, namely, We can change mechanisms parameters and adjust variables step in the algorithm PerformanceAnalysis to meet actual analysis. The algorithm is programmed with MATLAB and the global performance atlas of 6-PUS mechanism are drawn (see Fig. 3 to Fig. 8), then the mechanisms performance is analyzed using the atlas. Table 1 shows the results of sample point number (abbr. to SPN) for 121 mechanisms respectively, the fixed link length of mechanism with sequence number (abbr. to SN) 1 is 45cm, its radius of dynamic platform is 10cm, the fixed link length of mechanism with SN 121 is 55cm, its radium of dynamic platform is 20cm, the rest may be deduced by analogy. In addition, table 2 gives the performance indices of some mechanism only, where the mean of SN is same as in table 1.Description for algorithm PerformanceAnalysis:PerformanceAnalysis BeginFor L = 45 To 55 / / scope of fixed length linkFor R = 10 To 20 / / scope of radius of dynamic platformSamplePointNumber = 0; / / initialization sample point number is zero for every mechanismFor x =-Maximum To + Maximum moving along Axis X Step 4cmFor y =-Maximum To + Maximum moving along Axis Y Step 4cmFor z =-Maximum To + Maximum moving along Axis Z Step 4cmFor =-Maximum To + Maximum rotating around Axis X Step 12 For =-Maximum To + Maximum rotating around Axis Y Step 12 For =-Maximum To + Maximum rotating around Axis Z Step 12 If sample point (x, y, z, , , )? Reachable point of mechanismsworkspaceCalculating the first order influence coefficient matrix andits Frobenius norm at current point;If The first order influence coefficient matrix is notsingularSamplePointNumber = SamplePointNumber +1;Calculating the second order influencecoefficient matrix and its Frobenius normcalculating condition number at this point withformula and accumulating sum of performanceindices;/ / detailed formula is given in the followingof this sectionEndifEndifEndforEndforEndforEndforEndforEndforCalculating all the performance indices of the mechanism at current size and append the results to corresponding data files for different performance index;/ / performance index of the mechanism =(accumulating sum of performance indices at all sample points) / SamplePointNumber/ / There are six data files for performance indices totally: angular velocity, linear velocity,angular acceleration, linear acceleration, force and moment, inertia forceEndforEndforDrawing all the global performance atlas of 6-PUS mechanism by all the index data files(Every data file includes the information of 121 mechanisms);/ / There are six performances atlas totally: angular velocity, linear velocity, angular acceleration, linear acceleration, force and moment, inertia forceEndTable 1. The SPN of 121 mechanisms in experimentSN SPN 六个性能指标角速度 线速度 角加速度线加速度 力和力矩惯性力1 30962 0.17276 0.17442 0.06236 0.11315 0.01521 0.374542 28074 0.18248 0.18171 0.08075 0.13276 0.01456 0.404213 25848 0.19128 0.18836 0.09932 0.15184 0.01396 0.431364 23252 0.20087 0.19545 0.11897 0.17225 0.01348 0.46030. . . . . . . .59 42390 0.21105 0.18995 0.10050 0.01304 0.01304 0.4023360 37410 0.21915 0.19537 0.11308 0.17355 0.01257 0.4260661 32446 0.22717 0.20041 0.12312 0.19230 0.01216 0.44929. . . . . . . .119 28942 0.25779 0.20680 0.12265 0.22596 0.01064 0.47030 120 23998 0.26786 0.21185 0.12116 0.24139 0.01041 0.49500121 19828 0.27714 0.21610 0.11399 0.25527 0.01017 0.51745Table 2. Six performance indices of some mechanisms2.2.1 Analysis of kinematics performance indices2.2.1.1 Global performance indices of angular velocity and linear velocity As the influence coefficient G of engraving mechanism is not a constant matrix, it makes the measuring index for parallel mechanism based on G not to be a constant matrix also, so we cant utilize one value to measure the good or bad of the dexterity, isotropy and controlling accuracy (Xi-juan, G., 2002). Here, we define parallel mechanism global performance indices of angular velocity and linear velocity as following respectivelyWhere W is the reachable workspace of mechanism,and denote the condition numbers for angular velocity and linear velocity respectively (Where | | | | denotes Frobenius norm of matrix, superscript + denotes generalized inverse matrix, the same mean as following). We can get the performance indices value of the angular velocity and linear velocity according to the condition numbers of every mechanisms sample points. Replacing the underlined part in algorithm PerformanceAnalysis with two formulas in (1) respectively, we can draw the performance atlas for angular velocity and linear velocity as shown in Fig.3 and fig.4 based on 121 mechanisms indices values of angular velocity and linear velocity. According to the rule that the bigger J (J G, Gv), the higher dexterity and controlling accuracy of the mechanism, from Fig.3 we can see that the mechanism performance index of angular velocity is not changing with the link length when the changing range of R is not big, but it has the trend that the bigger R, the betterFig. 3. Atlas of angular velocity global performanceFig. 4. Atlas of linear velocity global performanceperformance index of angular velocity, furthermore, the index of mechanism angular velocity is better when L = 46.5cm 49.5cm and R = 19.5cm, namely, the output error of angular velocity is smaller. Similarly, from Fig.4 we know that the mechanism index of linear velocity is better when L = 45cm 48cm and R = 19cm, that is to say,the output error of linear velocity is smaller.2.2.1.2 Global performance indices of angular acceleration and linear acceleration.Considering the influences on acceleration of both the first and the second order influence coefficient matrix, the condition numbers of angular acceleration and linear acceleration for 6-DOF parallel mechanism are (Xi-juan, G., 2002; Xi-juan, G. & Zhen, H., 2002)Where, a and b is error coefficient.So the global performance indices of angularacceleration and linear acceleration for parallelengraving mechanism can be defined asWhere Supposed the mechanism error is smaller than 2% (that is, a = b = 0.02), replacing the underlined part in algorithm .PerformanceAnalysis with formula (4), we can draw the performance atlas for angular acceleration and linear acceleration as shown in Fig.5 and Fig.6. As same as the evaluating method for velocity performance index, from Fig. 5 we can see that the angle acceleration performance of mechanism is better when nearly L = 45cm 47cm and R = 16cm 20cm, output error is smaller accordingly. Among the 121 mechanism we studied, its maximum is 0.16399.Fig.5. Atlas of angular acceleration global performanceBy observing Fig.6 carefully, we know that performanceof linear acceleration is better when nearly L=45cm48cm and R=19.5cm, accordingly, output error should be smaller. From above analysis, we know that mechanism size with good indices for linear velocity and linear acceleration is coincidence in some degree among the 121 mechanisms we studied, but performance index of angular velocity and angular acceleration may not the best in the same size, so it cant get coincidence. Thus, our analysis will be helpful for designing and choosing mechanism by actual needs. Similarly, analyzing method of kinematics performance indices is the same when other parameters of the mechanism are changed.Fig. 6 . Atlas of linear acceleration global performance2.2.2 Analysis of dynamics performance indices2.2.2.1 Analysis of power and moment performanceIndex. The condition number of power and moment performance index based on the first order influence coefficient matrix of power GF for 6-DOF parallel mechanism can be defined as(Xi-juan,G.,2002)Similarly, we define global performance index of power and moment for 6-DOF parallel mechanism asWe suppose that power and moment of parallel mechanism is isotropy when J=1. With formula (5) as condition number, replacing the underlined part in algorithm with formula (6), we can draw the performance atlas for power and m
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:定梁式数控雕刻机机械结构设计【14张CAD图纸和说明书】
链接地址:https://www.renrendoc.com/p-6038812.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!