


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.7.最大面积是多少一、学生知识状况分析学生的知识技能基础:由简单的二次函数yx2开始,然后是yax2,yax2+c,最后是y=a(x-h)2,ya(x-h)2+k,yax2+bx+c,学生已经掌握了二次函数的三种表示方式和性质。学生的活动经验基础:通过第七节的学习,学生已经经历了由实际问题转化为数学问题的过程,对解决这类问题有了处理经验。二、教学任务分析 教学目标如下: (一)知识与技能能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值(二)过程与方法1通过分析和表示不同背景下实际问题中变量之间的二次函数关系,培养学生的分析判断能力2通过运用二次函数的知识解决实际问题,培养学生的数学应用能力(三)情感态度与价值观1经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学知识的应用价值2能够对解决问题的基本策略进行反思,形成个人解决问题的风格3进一步体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心,具有初步的创新精神和实践能力教学重点1经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学知识的应用价值2能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题教学难点能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大面积的问题三、教学过程分析第一环节 创设问题情境,引入新课上节课我们利用二次函数解决了最大利润问题,知道了求最大利润就是求二次函数的最大值,实际上就是利用二次函数来解决实际问题解决这类问题的关键是要审清题意,明确要解决的是什么,分析问题中各个量之间的关系,建立数学模型。在此基础上,利用我们所学过的数学知识,逐步得到问题的解答过程本节课我们将继续利用二次函数解决最大面积的问题活动内容:由四个实际问题构成1问题一:如下图,在一个直角三角形的内部作一个长方形ABCD,其中AB和AD分别在两直角边上(1)设长方形的一边ABx m,那么AD边的长度如何表示?(2)设长方形的面积为y m2,当x取何值时,y的值最大?最大值是多少?问题一的设计目的:对于这个问题,教师将其作为例题,不论是对问题本身的分析,还是具体的解法过程,都将作出细致、规范的讲解和示范。具体的过程如下:分析:(1)要求AD边的长度,即求BC边的长度,而BC是EBC中的一边,因此可以用三角形相似求出BC由EBCEAF,得即所以ADBC(40x)(2)要求面积y的最大值,即求函数yABADx(40x)的最大值,就转化为数学问题了2问题二:将问题一变式:“设AD边的长为x m,则问题会怎样呢?”活动目的:在活动解决之初(末),揭示该问题与问题一的关系3问题三:对问题一再变式如图,在一个直角三角形的内部作一个矩形ABCD,其中点A和点D分别在两直角边上,BC在斜边上.(1).设矩形的一边BC=xm,那么AB边的长度如何表示?(2).设矩形的面积为ym2,当x取何值时,y的最大值是多少?活动目的:有了前面两题作基础,这个问题可以留给学生自己解决,作为练习4问题四:某建筑物的窗户如下图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m当x等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?分析:x为半圆的半径,也是矩形的较长边,因此x与半圆面积和矩形面积都有关系要求透过窗户的光线最多,也就是求矩形和半圆的面积之和最大,即2xyx2最大,而由于4y4x3xx7x4yx15,所以y面积Sx22xyx22xx23.5x27.5x,这时已经转化为数学问题即二次函数了,只要化为顶点式或代入顶点坐标公式中即可第二环节 归纳升华活动内容:同学们能否根据前面的例子作一下总结,解决此类问题的基本思路是什么呢?与同伴进行交流活动目的:解决此类问题的基本思路是:MABCDPQR(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系;(3)用数学的方式表示它们之间的关系;(4)做函数求解;(5)检验结果的合理性,拓展等第三环节 课堂练习,活动探究活动内容:1.用48米长的竹篱笆围建一矩形养鸡场,养鸡场一面用砖砌成,另三面用竹篱笆围成,并且在与砖墙相对的一面开2米宽的门(不用篱笆),问养鸡场的边长为多少米时,养鸡场占地面积最大?最大面积是多少?2.正方形ABCD边长5cm,等腰三角形PQR,PQ=PR=5cm,QR=8cm,点B、C、Q、R在同一直线l上,当C、Q两点重合时,等腰PQR以1cm/s的速度沿直线l向左方向开始匀速运动,ts后正方形与等腰三角形重合部分面积为Scm2,解答下列问题:(1)当t=3s时,求S的值;(2)当t=3s时,求S的值;(3)当5st8s时,求S
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025昆明市盘龙区汇承中学招聘教师(12人)考前自测高频考点模拟试题及答案详解(网校专用)
- 2025德曼节能科技(山东)有限公司招聘10人考前自测高频考点模拟试题附答案详解(考试直接用)
- 2025湖南师范大学科创港校区规划建设指挥部劳务派遣人员招聘5人考前自测高频考点模拟试题附答案详解(考试直接用)
- 2025广西河池市巴马瑶族自治县消防救援大队招录3人模拟试卷有答案详解
- 2025合肥市口腔医院招聘工作人员81人考前自测高频考点模拟试题附答案详解
- 2025年西北(西安)电能成套设备有限公司招聘(4人)模拟试卷及参考答案详解
- 2025贵州民族大学参加第十三届贵州人才博览会引才60人考前自测高频考点模拟试题(含答案详解)
- 2025河南郑州高新区双桥社区卫生服务中心招聘3人模拟试卷及答案详解一套
- 河北省【中职专业高考】2025年中职高考对口升学(理论考试)真题卷【轻工纺织大类】模拟练习
- 食品加工生产合同书5篇
- 高压氧的健康宣教
- 2025至2030中国硅单晶生长炉行业项目调研及市场前景预测评估报告
- 子宫肌瘤麻醉管理
- 成人床旁心电监护护理规程
- 食用菌种植项目可行性研究报告立项申请报告范文
- 2025版技术服务合同协议
- 焦炉机械伤害事故及其预防
- GB 5768.1-2025道路交通标志和标线第1部分:总则
- 江西红色文化考试试题及答案
- 苏州市施工图无障碍设计专篇参考样式(试行)2025
- 哮喘的诊疗和规范化治疗
评论
0/150
提交评论