说明书.doc

回转窑托轮系统维修装置的设计【17张图/17000字】【优秀机械毕业设计论文】

收藏

资源目录
跳过导航链接。
回转窑托轮系统维修装置的设计【】【优秀机械毕业设计论文】.rar
说明书.doc---(点击预览)
翻译.doc---(点击预览)
任务书+开题报告.doc---(点击预览)
A0-托轮装配图.dwg
A1-刀架.dwg
A1-托轮轴.dwg
A1-托轮零件图.dwg
A1-液压原理图.dwg
A1-液压缸.dwg
A2-活塞图.dwg
压缩包内文档预览:

资源预览需要最新版本的Flash Player支持。
您尚未安装或版本过低,建议您

文档包括:说明书一份,42页,17000字左右.英文翻译一份.任务书一份.开题报告一份.图纸共7张:A0-托轮装配图.dwgA1-刀架.dwgA1-托轮零件图.dwgA1-托轮轴.dwgA1-液压缸.dwgA1-液压原理图.dwgA2-活塞图.dwg1.毕业设计的背景: 回转窑是建材、冶金、化工等行业生产流程中的核心设备,一次停窑将引起整个生产流程的中断,造成重大经济损失。托轮作为回转窑的支承装置保证其安全、高效、健康地运行很重要。针对回转窑在运行过程中的轴线偏移,需要对托轮进行调整,用顶丝调整托轮劳动强度大而且费时, 用千斤顶使顶丝卸载,然后人工调整顶丝,液压消除后仍靠顶丝顶住轴承。不但免去了烦重的体力劳动,而且加快了窑的找正。2.毕业设计(论文)的内容和要求:1.将大学期间所学理论知识应用到工程实际中去2.根据现场具体要求能结合实际设计实用的产品3.说明书2.0万字4.与课题相关的英文翻译(4000个词汇)5.图纸3张(0)3.主要参考文献:回转窑(设计、使用与维护),回转窑编写组编,冶金工业出版社氧化铝回转窑修理技术,李安平、贾志军编著,海洋出版社建材机械液压传动,张运祺编,中国建筑工业出版社液压设计手册,机械设计编委会,机械工业出版社摘要回转窑是建材、冶金、化工等行业生产流程中的核心设备,一次停窑将引起整个生产流程的中断,造成重大经济损失。托轮作为回转窑的支承装置保证其安全、高效、健康地运行很重要。本文概述了回转窑的应用发展和基本结构。计算了回转窑的各档支撑力并对托轮进行受力分析。针对回转窑轴线调整使用的千斤顶,重点设计了液压回路并且对液压缸进行设计计算。最后对托轮表面维护中采用的动态车削的可行性进行了分析。关键词 回转窑;托轮;维护;液压千斤顶;动态车削AbstractRotary kiln is a key equipment in the metallurgy, chemistry and architectural material .Once stop will bring interruption to the whole Production line, and make a great Productivity losses. so safety,efficiency and Healthiness operation is the key Point to advance benefit of the enterprise.This paper outlines the development ,application and basic structure of the rotary kiln. Rotary kiln's various grade of support strength calculation and the stress analysis to the under roller have been carried out in the paper. The paper also shows a hydraulic circuit design of the jack ,which is in the use of Kiln axis adjustment ,and the calculation to hydraulic cylinders. The feasibility analysis of dynamic turning used in the maintenance of supporting wheel surface is at the end of this paper.Keywords Rotary kiln Jockey pulley Maintenance Hydraulic jack Turning dynamic目 录1绪论11.1回转窑应用与发展概述11.1.1回转窑应用概述11.1.2回转窑发展概述11.2回转窑的基本结构21.3论文主要工作及研究思路42回转窑各档支撑力的计算62.1回转窑筒体总体结构参数的确定62.2 筒体载荷计算及载荷图72.2.1筒体载荷计算 72.2.2原始载荷图及简化82.3用三弯矩方程法计算支座反力102.3.1计算的有关概念102.3.2支座反力的计算113滚圈的设计与计算163.1滚圈的截面型式163.2滚圈与托轮材料163.3滚圈的接触应力及截面尺寸计算164托轮的受力分析及尺寸计算204.1托轮装置的结构及分类204.2托轮的受力分析204.3托轮的基本尺寸计算214.4滑动轴承225回转窑的轴线调整255.1托轮调整对轴线的影响量255.2托轮的调整方法255.3托轮调整的注意事项266千斤顶液压系统的设计计算286.1液压系统原理图的拟定286.2液压系统的计算296.2.1液压缸的设计计算306.2.2液压泵及电机的选择326.3液压系统的发热温升337支承托轮的动态维修357.1托轮的表面缺陷357.2车削的驱动力矩阻力矩计算357.3现场动态车削托轮的特殊性377.4专用机床的设计安装37结论40致谢41参考文献42附录43附录143附录250 
编号:604903    类型:共享资源    大小:928.48KB    格式:RAR    上传时间:2016-02-26 上传人:木*** IP属地:江苏
50
积分
关 键 词:
回转 托轮 系统 维修 装置 设计 优秀 优良 机械 毕业设计 论文
资源描述:

文档包括:
说明书一份,42页,17000字左右.
英文翻译一份.
任务书一份.
开题报告一份.

图纸共7张:
A0-托轮装配图.dwg
A1-刀架.dwg
A1-托轮零件图.dwg
A1-托轮轴.dwg
A1-液压缸.dwg
A1-液压原理图.dwg
A2-活塞图.dwg

1.毕业设计的背景: 
回转窑是建材、冶金、化工等行业生产流程中的核心设备,一次停窑将引起整个生产
流程的中断,造成重大经济损失。托轮作为回转窑的支承装置保证其安全、高效、健康地
运行很重要。针对回转窑在运行过程中的轴线偏移,需要对托轮进行调整,用顶丝调整托轮
劳动强度大而且费时, 用千斤顶使顶丝卸载,然后人工调整顶丝,液压消除后仍靠顶丝顶
住轴承。不但免去了烦重的体力劳动,而且加快了窑的找正。

2.毕业设计(论文)的内容和要求:
1.将大学期间所学理论知识应用到工程实际中去
2.根据现场具体要求能结合实际设计实用的产品
3.说明书2.0万字
4.与课题相关的英文翻译(4000个词汇)
5.图纸3张(0﹟)

3.主要参考文献:
《回转窑(设计、使用与维护)》,《回转窑》编写组编,冶金工业出版社
《氧化铝回转窑修理技术》,李安平、贾志军编著,海洋出版社
《建材机械液压传动》,张运祺编,中国建筑工业出版社
《液压设计手册》,机械设计编委会,机械工业出版社

摘要
回转窑是建材、冶金、化工等行业生产流程中的核心设备,一次停窑将引起整个生产流程的中断,造成重大经济损失。托轮作为回转窑的支承装置保证其安全、高效、健康地运行很重要。
本文概述了回转窑的应用发展和基本结构。计算了回转窑的各档支撑力并对托轮进行受力分析。针对回转窑轴线调整使用的千斤顶,重点设计了液压回路并且对液压缸进行设计计算。最后对托轮表面维护中采用的动态车削的可行性进行了分析。

关键词 回转窑;托轮;维护;液压千斤顶;动态车削

Abstract
Rotary kiln is a key equipment in the metallurgy, chemistry and architectural material .Once stop will bring interruption to the whole Production line, and make a great Productivity losses. so safety,efficiency and Healthiness operation is the key Point to advance benefit of the enterprise.
This paper outlines the development ,application and basic structure of the rotary kiln. Rotary kiln's various grade of support strength calculation and the stress analysis to the under roller have been carried out in the paper. The paper also shows a hydraulic circuit design of the jack ,which is in the use of Kiln axis adjustment ,and the calculation to hydraulic cylinders. The feasibility analysis of dynamic turning used in the maintenance of supporting wheel surface is at the end of this paper.

Keywords Rotary kiln Jockey pulley Maintenance Hydraulic jack Turning dynamic

目 录
1绪论 1
1.1回转窑应用与发展概述 1
1.1.1回转窑应用概述 1
1.1.2回转窑发展概述 1
1.2回转窑的基本结构 2
1.3论文主要工作及研究思路 4
2回转窑各档支撑力的计算 6
2.1回转窑筒体总体结构参数的确定 6
2.2 筒体载荷计算及载荷图 7
2.2.1筒体载荷计算 7
2.2.2原始载荷图及简化 8
2.3用三弯矩方程法计算支座反力 10
2.3.1计算的有关概念 10
2.3.2支座反力的计算 11
3滚圈的设计与计算 16
3.1滚圈的截面型式 16
3.2滚圈与托轮材料 16
3.3滚圈的接触应力及截面尺寸计算 16
4托轮的受力分析及尺寸计算 20
4.1托轮装置的结构及分类 20
4.2托轮的受力分析 20
4.3托轮的基本尺寸计算 21
4.4滑动轴承 22
5回转窑的轴线调整 25
5.1托轮调整对轴线的影响量 25
5.2托轮的调整方法 25
5.3托轮调整的注意事项 26
6千斤顶液压系统的设计计算 28
6.1液压系统原理图的拟定 28
6.2液压系统的计算 29
6.2.1液压缸的设计计算 30
6.2.2液压泵及电机的选择 32
6.3液压系统的发热温升 33
7支承托轮的动态维修 35
7.1托轮的表面缺陷 35
7.2车削的驱动力矩阻力矩计算 35
7.3现场动态车削托轮的特殊性 37
7.4专用机床的设计安装 37
结论 40
致谢 41
参考文献 42
附录 43
附录1 43
附录2 50


回转窑托轮系统维修装置的设计-托轮装配图

回转窑托轮系统维修装置的设计-刀架

回转窑托轮系统维修装置的设计-托轮零件图

回转窑托轮系统维修装置的设计-托轮轴

回转窑托轮系统维修装置的设计-液压缸 

回转窑托轮系统维修装置的设计-液压原理图

回转窑托轮系统维修装置的设计-活塞图

内容简介:
毕业设计 附本 回转窑托轮系统维修装置的设计与计算 F 生姓名 吴建 学院名称 机电工程学院 专业名称 机械设计制造及其自动化 指导教师 杨根喜 2008 年 6 月 2 日 徐州工程学院 毕业设计(论文)设计书 机电工程 学院 机械设计制造及其自动化 专业 设计(论文)题目 回转窑托轮系统维修装 置的设计与计算 学 生 姓 名 吴建 班 级 04 机本( 6)班 起 止 日 期 指 导 教 师 杨根喜 教研室主任 发任务书日期 2008 年 2 月 25 日 回转窑是建材、冶金、化工等行业生产流程中的核心设备,一次停窑将引起整个生产 流程的中断,造成重大经济损失。托轮作为回转窑的支承装置保证其安全、高效、健康地 运行很重要 。 针对回转窑在运行过程中的轴线偏移 ,需要对托轮进行调整 ,用顶丝调整托轮 劳动强度大而且费时 , 用千斤顶使顶丝卸载,然后人工调整顶丝, 液压消除后仍靠顶丝顶 住轴承。不但免去了烦重的体力劳 动, 而且 加快 了 窑的找正 。 论文 )的内容和要求: 结合实际设计实用的产品 字 4000 个词汇 ) 张 (0 ) 回转窑 (设计、使用与维护 ),回转窑编写组编,冶金工业出版社 氧化铝回转窑修理技术,李安平、贾志军编著,海洋出版社 建材机械液压传动,张运祺编,中国建筑工业出版社 液压设计手册,机械设计编委会,机械工业出版社 论 文 )进度计划 (以周为单位 ): 起 止 日 期 工 作 内 容 备 注 第 1 周 第 2 周 第 3 周 第 4 周 第 5 周 第 6 周 第 7 周 第 8 周 第 9 周 第 10 周 第 11 周 第 12 周 第 13 周 第 14 周 第 15 周 第 16 周 调研、查资料 查资料 对回转窑及托轮装置构建力学模型 受力分析与计算 回转窑垂直支撑 装置方案的选择 回转窑垂直支撑 装置的设计与计算 回转窑垂直支 撑 装置的设计与计算 回转窑水平移动装置方案的选择 回转窑水平移动装置的设计与计算 油缸的设计、计算 油缸的结构设计、 制图 其他辅助部件、零件 的结构设计 绘图 绘图、写说明书 写说明书 答辩 教研室审查意见: 室主任 年 月 日 学院审查意见: 教学院长 年 月 日 徐州工程学院 毕业设计(论文)开题报告 课 题 名 称: 回转窑托轮系统维修装置的设计与计算 学 生 姓 名: 吴建 学号: 20040609613 指 导 教 师: 杨根喜 职称: 高级工程师 所 在 学 院: 机电工程学院 专 业 名 称: 机械设计制造及其自动化 徐州工程学院 2008 年 3 月 04 日 说 明 1根据徐州工程学院 毕业设计 (论文 )管理规定 ,学生必须撰写 毕业设计(论文)开题报告 ,由指导教师签署意见、教研室审查,学院教学院长 批准后实施。 2 开题报告是毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。学生应当在毕业设计(论文)工作前期内完成,开题报告不合格者不得参加答辩。 3毕业设计开题报告各项内容要实事求是,逐条认真填写。其中的文字表达要明确、严谨,语言通顺,外来语要同时用原文和中文表达。第一次出现缩写词,须注出全称。 4本报告中,由学生本人撰写的对课题和研究工作的分析及描述,没有经过整理归纳,缺乏个人见解仅仅从网上下载材料拼凑而成的开题报告按不合格论。 5. 课题类型填:工程设计类;理论研究类;应用(实验)研 究类;软件设计类;其它。 6、课题来源填:教师科研;社会生产实践;教学;其它 课题 名称 回转窑托轮系统维修装置的设计与计算 课题来源 企业现场 课题类型 工程设计 选题的背景及意义 回转窑是建材、冶金、化工等行业生产流程中的核心设备,一次停窑将引起整个生产 流程的中断,造成重大经济损失。托轮作为回转窑的支承装置保证其安全、高效、健康地运行很重要 。 针对回转窑在运行过程中的轴线偏移 ,需要对托轮进行调整 ,用顶丝调整托轮劳动强度大而且费时 , 用千斤顶使顶丝卸载,然后人工调整顶丝,液压消除后仍靠顶丝顶 住轴承,不但免去了烦重的体力劳动,而且加快了窑的找正。 研究 内容拟解决的主要问题 1. 回转窑各档支 撑 力的计算 2. 托轮受力分析与计算 3. 回转窑垂直支 撑 装置的设计与计算 4. 回转窑水平移动装置的设计与计算 5. 油缸的设计、计算 6. 辅助部件、零件的设计 研究方法技术路线 1. 对回转窑的各档支 撑 力进行计算 2. 对托轮进行受力分析 3. 回转窑垂直支 撑 装置千斤顶的设计计算 4. 绘制图纸 研究的总体安排和进度计划 第 1 周 调研、查资料 第 2 周 查资料 第 3 周 对回转窑及托轮装置构建力学模型 第 4 周 受力分析与计算 第 5 周 回转窑垂直支 撑 装置方案的选择 第 6 周 回转窑垂直支 撑 装置的设计与计算 第 7 周 回转窑垂直支 撑 装置的设计与计算 第 8 周 回转窑水平移动装置方案的选择 第 9 周 回转窑水平移动装置的设计与计算 第 10 周 油缸的设计、计算 第 11 周 油缸的结构设计、制图 第 12 周 其他辅助部件、零件的结构设计 第 13 周 绘图 第 14 周 绘图、写说明书 第 15 周 写说明书 第 16 周 答辩 主要参考 文献 1回转窑 (设计、使用与维护 ),回转窑编写组编,冶金工业出版社 2氧化铝回转窑修理技术,李安平、贾志军编著,海洋出版社 3 建材机械液压传动,张运祺编,中国建筑工业出版社 4材料力学,刘鸿文主编,高等教育出版社 5液压设计手册,机械设计编委会,机械工业出版社 6建筑机械与设备,张森林主编,武汉工业大学出版社 7化工回转窑设计规定,化学工业部 8金属切削机床概述,顾维邦主编,机械工业出版社 9机械设计手册,蔡春源主编,辽宁科学技术出版社 指导教师 意 见 指导教师签名: 年 月 日 教研室意见 学院意见 教研室主任签名: 年 月 日 教学院长签名: 年 月 日 毕业设计(论文)进度记录表 第 1 2 周 主要完成工作: 指导教师意见 第 3 4 周 主要完成工作: 第 5 6 周 主要完成工作: 第 7 8 周 主要完成工作: 第 9 10 周 主要完 成工作: 第 11 12 周 主要完成工作: 第 13 14 周 主要完成工作: 第 15 16 周 主要完成工作: 毕业设计(论文)指导记录表 指导内容记录: 指导教师签名: 年 月 日 指导内容纪录: 指导教师签名: 年 月 日 指导内容纪录: 指导教师签名: 年 月 日 指导内容纪录: 指导教师签名: 年 月 日 指导内容记录: 指导教师签名: 年 月 日 指导内容纪录: 指导教师签名: 年 月 日 指导内容纪录: 指导教师签名: 年 月 日 指导内容纪录: 指导教师签名: 年 月 日 指导内容记录: 指导教师签名: 年 月 日 指导内容纪录: 指导教师签名: 年 月 日 指导内容纪录: 指导教师签名: 年 月 日 指导内容纪录: 指导教师签名: 年 月 日 指导内容记录: 指导教师签名: 年 月 日 指导内容纪录: 指导教师签名: 年 月 日 指导内容纪录: 指导教师签名: 年 月 日 指导内容纪录: 指导教师签名: 年 月 日 徐州工程学院学生毕业设计(论文)中期情况检查表 学院名称: 检查日期: 年 月 日 学生姓名 专业班级 指导教师 设计(论文)题目 工作进度情况 是否符合任务书要求进度 能否按期完成任务 工作态度情况 (态度、纪律、出勤、主动接受指导等 ) 质量 评价 (针对已完成的部分 ) 存在问题和解决办法 检查人 签字 学院负责人签字 徐州工程学院 毕业设计(论文)指导教师 评阅 表 学院: 专业: 学生: 学号: 题目: 评价 项目 评价要素 成绩评定 优 良 中 及格 不及格 工作 态度 工作态度认真,按时出勤 能按规定进度完成设计任务 选题 质量 选题方向和范围 选题难 易 度 选题 理论意义和实际应用价值 能力 水平 查阅和应用文献资料能力 综合运用知识能力 研究方法与手段 实验技能和实践能力 创新意识 设计 论文 质量 内容与写作 结构与水平 规范化程度 成果与成效 指导教师意见 建议成绩 是否同意参加答辩 评语: 指导教师签字: 年 月 日 徐州工程学院毕业设计(论文) 评阅表 学院: 专业: 学生: 学号: 题目: 评价 项目 评价要素 成绩评定 优 良 中 及格 不及格 选题 质量 选题方向和范围 选题难 易 度 选题 理论意义和实际应用价值 能力 水平 查阅和应用文献资料能力 综合运用知识能力 研究方法与手段 实验技能和实践能力 创新意识 设计 论文 质量 内容与写作 结构与水平 规范化程度 成果与成效 评 阅 教师 意 见 建议成绩 是否同意参加答辩 评语: 评阅教师签字: 年 月 日 徐州工程学院毕业设计(论文) 答辩及综合成绩评定表 学 院 专业班级 学生姓名 学 号 指导教师 设计论文题 目 答辩时间 年 月 日 时 分至 时 分 答辩地点 答辩小组成 员 姓名 职称 答辩 记录 提问人 提问主要内容 学生回答摘要 答辩记录人签字: 答辩 小组 意见 答辩评语: 答辩成绩 答辩小组组长签字: 综合 成绩 评定 指导教师评定成绩 评阅教师评定成绩 答辩成绩 综合评定成绩 答辩委员会主任签字: 年 月 日 徐州工程学院毕业设计附录附录1 Machine DesignedBasic concepts of mechanismA system that transmits forces in a predetermined manner to accomplish specific objectives may be considered a machine. A mechanism may be defined in a similar manner, but the term mechanism is usually applied to a system where the principal function is to transmit motion. Kinematics is the study of motion in mechanisms, while the analysis of force and torques in machines is called dynamics.Once the need for a machine or mechanism with given characteristics is identified, the design process begins. Detailed analysis of displacements, velocities, and accelerations is usually required. This part of the design process is then followed by analysis of forces and torques. The design process may continue long after first models have been produced and include redesigns of components that affect velocities, acceleration, forces, and torques. In order to successfully compete from year to year, most manufacturers must continuously modify their product and their methods of production. Increases in production rate, up-grading of product performance, redesign for cost and weight reduction, and motion analysis of new product lines are frequently required. Success may hinge on the correct kinematics and dynamic analysis of the problem.The complete design of a machine is a complex process. The designer must have a good background in such fields as statics, kinematics, dynamics, and strength of materials, and in addition, be familiar with the fabricating materials and process. The design must be able to assemble all the relevant facts, and make calculations, sketches, and drawing to convey manufacturing information to the shop.One of the first steps in the design of any product is to select the material from which each part is to be made. Numerous materials are available to todays designers. The function of the product, its appearance, the cost of the material, and the cost of fabrication are information in making a selection, a careful evaluation of the properties of a material must be prior to any calculations.Careful calculations are necessary to ensure the validity of a design. Calculations never appear on drawings, but are filed away for several reasons. In case of any part failures, it is desirable to know what was done in originally designing the defective components. Also, an experience file can result from having calculations from past projects. When a similar design is needed, past records are of great help.The checking of calculation (and drawing dimensions) is of utmost importance. The misplacement of one decimal point can ruin an otherwise acceptable project. For example, if one were to design a bracket to support 100 lb when it should have been figured for 1000 lb, failure would surely be forthcoming. All aspects of design work should be check and recheck.The computer is a tool helpful to mechanical designers to lighten tedious calculations and provide extended analysis of available data. Interactive system, based on computer capabilities, have made possible the concepts of computer-aided design (CAD) and computer-aided manufacturing (CAM) through such system, it is possible for one to transmit conceptual ideas to punched tapes for numerical machine control without having formal working drawings.Laboratory tests, models, and prototypes help considerably in machine design. Laboratories furnish much of the information needed to establish basic concepts; however, they can also be used to gain some idea of how a product will perform in the field.Finally, a successful designer does all he can to keep to data. New materials and production methods appear daily. Drafting and design personnel may lose their usefulness by not being versed in modern methods and materials. A good designer reads technical periodicals constantly to keep abreast of development.Design For ProductionEngineering concerns itself with understanding scientific principles and applying them to achieve a designated goal. In this sense, engineering might be considered an applied science.As an apple science, engineering uses scientific knowledge to achieve a specific objective. The mechanism whereby a requirement is converted to a meaningful and functional plan is called design. In other words, design is the formulation of a plan, a scheme, or a method to translate a need into a satisfactory function device that satisfies the original need.A design engineer may create on paper a device of excellent functional utility; but if that production is to become a reality, it must be produced at a practical cost in sufficient time. Thus it must be produced from available and advantageous materials, methods, processes, and equipment. Also, it must be competitive in quality, performance, appearance, and service life. In order to accomplish these objectives, the successful design engineer must be acquainted with these related factors or he must collaborate closely with those specialize in these aspects of the overall problem.Designing for production includes the work of two distinct functions: product design and process design. The production-design function involves the development of specification of a product that will be functionally sound, have eye appeal, and will give satisfactory performance for an adequate life. The process-design function includes developing the method of manufacture of the product so that it can be produced at a low cost. Thus, designing for production not only includes the designing of a product for economical manufacture, but also the design, specification, or creation of tools, equipment, methods, and manufacturing information for its production.An engineer cannot do an effective job of product design unless he knows or is supplied with adequate information as to how his designs will be produced. Therefore, the principal problem of engineering for production is sound functional design plus the selection of the materials and the processes to be used.In choosing these materials and processes, the functional designer must make many modification and changes in his original conception. The shape, color, size, tolerance requirements, texture, weight, and the functional design itself may be affected before the ideal design is developed that is functionally sound, has eye appeal, and is economical to produce within the required time.Materials in Engineering DesignToday, more than ever before, the engineer is faced with an unprecedented number of problems. He must design devices and function over a vast spectrum of environmental conditions. These vary from the low pressures found in outer space to the very high pressures existing in the ocean depths and include temperatures ranging from below that of liquid helium(-270 ) to those encountered in nuclear reactors and rocket engines( up to 1650). It is part of the engineers responsibility to select materials from which these structures and devices will be fabricated and to specify changes when materials have failed in their intended function. Also, there are many current technological problems that do not have the exotic image of the environmental extremes but nevertheless require new materials and new solutions. The technical solution to such problems as low-cost housing and mass transportation will undoubtedly require new concepts and new materials. In addition, there are few industries today where materials are not the key to meeting increasingly severe service conditions, improving quality, and lowing costs.The ultimate goal of engineering design is the fabrication and operation of devices or systems that will perform desired functions. Since performance, cost, and life depend on the characteristics of the materials from which the device or system is fabricated, selecting the requisite material becomes a significant aspect in the design process. If, for any given application, some material could be found that possessed all the right properties for that application, the consideration of materials could be postponed until the final stage in the design process and would simply involve identifying the material that possessed all the properties needed to meet the design specifications. However, this ideal situation does not yet exist, and designers do not have an unlimited choice of property combinations. Consequently, the choice of materials cannot be left until the end but most occur in at least a tentative way as the design proceeds in order for later steps based on intermediate calculations and decisions to be realistic. Before a final choice of materials can be made, trade-offs and modifications in materials requirements and/or in the design are generally required.The Strength of Mechanical ElementsOne of the primary consideration in designing any machine or structure is that the strength must be sufficiently greater than the stress to assure both safety and reliability. To assure that mechanical parts do not fail in service, it is necessary to learn why they sometimes do fail. Then we shall be able to relate the stresses with the strengths to achieve safety.Ideally, in designing any machine element, the engineer should have at his disposal the results of a great many strength tests of the particular material chosen. These tests should have been made on specimens having the same heat treatment, surface roughness, and size as the element he proposes to design; and the tests should be made under exactly the same loading conditions as the part will experience in service. This means that, if the part is to experience a bending load, it should be tested with a bending load. If it is to be subjected to combined bending and torsion, it should be tested under combined bending and torsion. Such tests will provide very useful and precise information. They tell the engineer what factor of safety to use and what the reliability is for a given serive life. Whenever such data are available for design purposes,the engineer can be assured that he is doing the best possible job of engineering. The cost of gathering such extensive data prior to design is justified if failure of the part may endanger human life, or if the part is manufactured in sufficiently large quantities. Automobiles and refrigerators, for example, have very good reliabilities because the part are made in such large quantities that they can be thoroughly tested in advance of manufacture. The cost of making these tests is very low when it is divided by the total number of parts manufactured.You can now appreciate the following four design categories:(1) Failure of the part would endanger human life, or the part is made in extremely large quantities; consequently, an elaborate testing program is justified during design.(2) The part is made in large enough quantities so that a moderate series of tests is feasible.(3) The part is made in such small quantities that testing is not justified at all; or the design must be completed so rapidly that these is not enough time for testing.(4) The part has already been designed, manufactured, and tested and found to be unsatisfactory. Analysis is required to understand why the part is unsatisfactory and what to do to improve it.It is with the last three categories that we shall be mostly concerned. This means that the designer will usually have only published values of yield strength, ultimate strength, and percentage elongation. With this meager information the engineer is expected to design against static and dynamic loads, biaxial and triaxial stress states, high and low temperatures, and large and small parts! The data usually available for design have been obtained form the simple tension test, where the load was applied gradually and the strain given time to develop. Yet these same data must be used in designing parts with complicated dynamic loads applied thousands of times per minute. No wonder machine parts sometimes fail.To sum up, the fundamental problem of the designer is to use the simple tension test data and relate them to the strength of the part, regardless of the stress state or the loading situation.It is possible for two metals to have exactly the same strength and hardness, yet one of these metals may have a superior ability to absorb overloads, because of the property called ductility. Ductility is measured by the percentage elongation which occurs in the material at fracture. The usual dividing line between ductility and brittleness is 5 percent elongation. A material having less than 5 percent elongation at fracture is said to be brittle, while one having more is said to be ductile.The elongation of a material is usually measured over 50 mm gauge length. Since this is not a measure of the actual strain, another method of determining ductility is sometimes used. After the specimen has been fractured, measurements are made of the area of the cross section at the fracture. Ductility can then be expressed as the percentage reduction in cross sectional area.The characteristic of a ductile material which permits it to absorb large overloads is an additional safety factor in design. Ductility is also important because it is a measure of that property of a material which permits it to be cold-worked. Such operations as bending and drawing are metal-processing operations which require ductile materials.When a material is to be selected to resist wear, erosion, or plastic deformation, hardness is generally the most important property. Several methods of hardness testing are available, depending upon which particular property is most desired. The four hardness numbers in greatest use are the Brinell, Rockwell, Vickers, and Knoop.Most hardness-testing systems employ a standard load which is applied to a ball or pyramid in contact with the material to be tested. The hardness is then expressed as a function of the size of the resulting indentation. This means that hardness is an easy property to measure, because the test is nondestructive and test specimens are not required. Usually the test can be conducted directly on an actual machine element.Gear Manufacturing MethodsPlaning The shape of the space between gear teeth is complex and varies with the number of teeth on the gear as well as tooth module, so most gear manufacturing methods generate the tooth flank instead of forming.Planing uses a reciprocating rack, stroking in the direction of the helix on a gear with a gradual generation of form as the rack effectively rolls round the gear blank. The rack is relieved out of contact for the return stroke as in normal shaping or planing. It has the great advantage that the cutting tool is a simple rack with (nearly) straight sides teeth which can easily be ground accurately. This method is little used for high production because it is relatively slow in operation due to the high tool and slide mass; for jobbing purpose the slow stroking rate does not matter and low tool costs give an advantage where unusual sizes or profile modifications are required.Shaping Shaping is inherently similar to planing but uses a circular cutter instead of a rack and the resulting reduction in the reciprocating inertia allows must higher stroking speeds; modern shapers cutting car gears can run at cutting stroking per minute. The shape of the cutter is roughly the same as an involute gear but the tips of the teeth are rounded.The generating drive between cutter and workpiece does not involve a rack or leadscrew since only circular motion is invoved. The tool and workpiece move tangentially typically 0.5 mm for each stroke of the cutter. On the return stroke the cutter must be retracted about 1 mm to give clearance otherwise tool rub occurs on the backstroke and failure is rapid.The advantages of shaping are that production rates are relatively high and that it is possible to cut right up to a shoulder. Unfortunately, for helical gears, a helical guides is required to impose a rotational motion on the stroking motion; such helical guides cannot be produced easily or cheaply so the method is only suitable for long runs with helical gears since special cutters and guides must be manufactured for each different helix angle. A great advantage of shaping is its ability to cut annular gears such as those required for large epicyclic drives.Hobbing Hobbing, the most used metal cutting method, uses the rack generating principle but avoids slow reciprocation by mounting many “rack” on a rotating cutter. The “rack” are displaced axially to form a gashed worm.Metal removal rates are high since no reciprocation of hob or workpiece is required and so cutting speeds of 40 m/min can be used for conventional hobs and up to 150 m/min for carbide hobs. Typically with a 100 mm diameter hob the rotation speed will be 100 rpm and so a twenty tooth workpiece will rotate at 5 rpm. Each revolution of the workpiece will correspond to 0.75 mm feed so the hod will advance through the workpiece at about 4 mm per minute. For car production roughing multiple start hods can be used with coarse feeds of 3 mm per revolution so that 100 rpm on the cutter, a two-star hobs and a 20 tooth gear will give a feed rate of 30 mm/min.Broaching Broaching is not usually used for helical gears but is useful for internal spur gears; the principle use of broaching in this context is for internal splines which cannot easily be made by any other method. As with all broaching the method is only economic for large quantities since steup costs are high.Broaching gives high accuracy and good surface finish but like all cutting processes is limited to “soft” materials which must be subsequently case-hardened or heat treated, giving distortion.Shaving Shaving is used as finishing processes for gears in the “soft” state. The objective is to improve surface finish and profile by mating the roughed-out gear with a “cutter” which will improve form.A Shaving cutter looks like a gear which has extre clearance at the root (for swarf and coolant removal) and whose tooth flanks have been grooved to give cutting edges. It is run in mesh with the rough gear with crossed axes so that these is in theory point contact with a relative velocity along the teeth giving scraping action. The shaving cutter teeth are relatively flexible in bending and so will only operate effectively when they are in double contact between two gear teeth. The gear and cutter operate at high rotational speeds with traversing of the workface and about 100 micron of material is removed. Cycle times can be less than half a minute and the machines are not expensive but cutters are delicate and difficult to manufacture.Grinding Grinding is extremely important because it is the main way hardened gears are machined. When high accuracy is required it is not sufficient to pre-correct for heat treatment distortion and grinding is then necessary.The simple approach to grinding is form grinding. The wheel profile is dressed accurately to shape using single point diamonds which are controlled by templates cut to the exact shape required. The profiled wheel is then reciprocated axially along the gear, when one tooth shape has been finished, involving typically 100 micron metal removal, the gear is indexed to the next tooth space. This method is fairly slow but given high accuracy consistently. Setting up is lengthy because different dressing templates are needed if module, number of teeth, helix angle, or profile correction is changed.The fastest grinding method uses the same principle as hobbing but replaces a gashed and relived worm by a grinding wheel which is a rack in section. Only single start worms are cut on the wheel but gear rotation speeds are high, 100 rpm typically, so it is difficult to design the drive system to give accuracy and rigidity. Accuracy of the process is reasonably high although there is a tendency for wheel and workpiece to deflect variably during grinding so the wheel form may require compensation for machine deflection effects. Generation of a worm shape on the grinding wheel is a slow process since a dressing diamond must not only form the rack profile but has to move axially as the wheel rotates. Once the wheel has beentrued, gears can be ground rapidly until redressing is required. This is the most popular method for high production rates with small gears.附录2机械设计机构的基本概念一个系统通过预定的方式来传递运动以完成特定的目的,那么可以认为它是一部机器。一个机械装置的定义可能是相似的,但是限制机构通常被用在传递主要功能运动的系统中。运动学主要研究机构的运动,当对其进行力和力矩的分析时我们称之为动力学。一旦需要对一台机器或设备的已有特征进行鉴别时,设计过程便开始了。通常需要对装置的转换、速度和加速度进行逐条地分析。这一部分的设计过程完成之后便紧跟着对力和力矩的分析。在生产出第一个样品之后以及结构的重新设计而对速度、加速度、力和力矩产生影响,这些可能会使设计的过程变得持久。为了使每一年的竞争都能成功,大多数的制造商必须不断地修正他们的产品和制造方法。经常需要提高生产率,改进产品性能,为降低成本和减轻重量而进行重新设计,对新产品生产线进行运动分析等项工作。对问题进行正确的运动学分析是成功的关键。 机器的完全设计是一个复杂的过程。设计者必须在诸如静力学、运动学、动力学以及材料力学等领域里有良好的背景,另外,他们还必须熟悉材料的加工以及过程。设计必须能够结合所有有关的事实,并且做出计算、草图和正式图,以此来将制造信息传递给商家。 任何产品设计的首先步骤之一就是为每一个即将要制造的零件选择材料。对于今天的设计者来说,可选的材料是非常多的。在做任何事情之前,首先要对零件的使用材料做出一个仔细的评估,产品的功能、外表以及材料的价格和制造的费用都可以作为选择的依据。 仔细的计算可以确保设计的正确性。计算从来不出现在图上,而是由于一些原因被另类归档。如果任何一个零件失效,人们非常想知道最初在设计这个有缺陷的成分时到底做了哪些工作。同样,已经完成了的工程可以产生一些经验文件。当一些相似的设计需要时,经验文件将会产生很大的帮助。 计算包括制图尺寸的校核是极度重要的。一个以别的方式能够被接受的工程会因为一个小数点的放错而被毁灭。例如,一只托架的原设计承载为 100 磅,却被标注为1000 磅,肯定会出事故。所有的设计工作方面都应是检查和再检查。 对机械设计人员来说,计算机是一个非常有用的工具,可以减轻沉闷的计算并且提供广泛的可得数据分析。通过在计算机基础上建立起来的交互式系统,使计算机辅助设计(CAD)和计算机辅助制造(CAM)的概念已经成为可能,他可以让人们传输概念上的想法来控制数控机床的穿孔纸带而不需要正式的工作图。 实验表明,模型,而且是原型在机械设计中将相当地有帮助。实验室提供了大量建立基础概念所需要的信息;然而,他们也可以用来获取关于一个产品怎样在一个领域里运行的一些想法。 最后,一个成功的设计者会尽其所能地保存数据。新的材料和生产方法每天都会不断地出现。起草和设计人员可能因为不精通先进的生产方法或材料而失去他们的优势。一个优秀的设计者会不断地阅读技术期刊来使自己与发展同步。 产品的设计 工程学利用可理解的科学的原则来关注它本身并且应用他们来达到一个指定的目标。在这种理解下,工程学可以被看作是一门应用科学。 如一个苹果科学,工程学利用科学的知识来达成一个特别的目标。把一个要求变成一种有意义的和实用的方案的机构称为设计。换
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:回转窑托轮系统维修装置的设计【17张图/17000字】【优秀机械毕业设计论文】
链接地址:https://www.renrendoc.com/p-604903.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!