高二数学解析几何复习题.doc_第1页
高二数学解析几何复习题.doc_第2页
高二数学解析几何复习题.doc_第3页
高二数学解析几何复习题.doc_第4页
高二数学解析几何复习题.doc_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

门源一中高二复习试题-解析几何如果你希望成功,以恒心为良友,以经验为参谋, 以细心为兄弟,以希望为哨兵。一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分)。1(2010苏州模拟)若ab0)过圆x2y28x2y10的圆心,则的最小值为 14已知是抛物线的焦点,过且斜率为的直线交于两点设,则的值等于 15已知两条直线,若,则_ _。16(201010诸城模拟)过抛物线y22px(p0)的焦点F的直线l交抛物线于点A、B(如图所示),交其准线于点C,若|BC|2|BF|,且|AF|3,则此抛物线的方程为 ()三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共74分)。17.(本小题满分12分)已知A(x1,y1),B(x2,y2)分别在直线xy70及xy50上,求AB中点M到原点距离的最小值18(12分)设O是坐标原点,F是抛物线y2=2px(p0)的焦点,A是抛物线上的一个动点, 与x轴正方向的夹角为600,求|的值19(12分)已知一动圆M,恒过点F,且总与直线相切 ()求动圆圆心M的轨迹C的方程; ()探究在曲线C上,是否存在异于原点的两点,当时, 直线AB恒过定点?若存在,求出定点坐标;若不存在,说明理由20(12分)双曲线的中心为原点,焦点在轴上,两条渐近线分别为,经过右焦点垂直于的直线分别交于两点已知成等差数列,且与同向 ()求双曲线的离心率; ()设被双曲线所截得的线段的长为4,求双曲线的方程21(12分)已知椭圆G的中心在坐标原点,长轴在轴上,离心率为,两个焦点分别为和,椭圆G上一点到和的距离之和为12圆:的圆心为点 (1)求椭圆G的方程 (2)求的面积 (3)问是否存在圆包围椭圆G?请说明理由22(12分)如图,已知椭圆的中心在原点,焦点在轴上,长轴长是短轴长的2倍且经过点M(2,1),平行于OM的直线l在轴上的截距为,l交椭圆于A、B两个不同点 (1)求椭圆的方程; (2)求m的取值范围; (3)求证直线MA、MB与轴始终围成一个等腰三角形 23(本小题满分12分)(2010诸城模拟) (本小题满分14分)抛物线的顶点在原点,焦点在x轴的正半轴上,直线xy10与抛物线相交于A、B两点,且|AB|.(1)求抛物线的方程;(2)在x轴上是否存在一点C,使ABC为正三角形?若存在,求出C点的坐标;若不存在,请说明理由24(14分)设椭圆E: (a,b0)过M(2,) ,N(,1)两点,O为坐标原点 ()求椭圆E的方程; ()是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B, 且?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理 由。参考答案一、选择题1A;解析:已知椭圆的离心率为,焦点是(-3,0),(3,0),则c=3,a=6, 椭圆的方程为,选A2C;解析:将直线方程化为,可得定点P(2,-8),再设抛物线 方程即可; 3D;解析:双曲线x2 y2=1的两条渐近线为: ,渐近线与直线x= 的交点坐标分别为(,)和(,-)利用角点代入法得的取值范围 为 4B;解析:由于, 由双曲线的定义知: |AF2|- |AF1|=, |BF2|- |BF1|=, |AF2|+|BF2|- |AB|=2,|AF2|+|BF2|=8+2, 则ABF2的周长为16+25 A;解析:由题,即 ,解之得:(负值舍去)故答案选A6C;解析:直线AxByC=0化为,又AC0,BC0 AB0, ,直线过一、二、四象限,不过第三象限故答案选C7C;解析:由()得,其焦点为(,0) (), 因为抛物线与椭圆有一个相同的焦点,所以椭圆=1的一个焦点为(,0), ,得 (,)8D;解析:由MP=MC , 知M在PC的垂直平分面内,又M面ABCD M在两平面的交线上故答案选D9B;解析:由题意2即m2+n24,点(m,n)在以原点为圆心,2为半径的圆内, 与椭圆的交点个数为2,故答案选B10C;解析:对于双曲线的一个焦点到一条渐近线的距离因为,而,因此,因此其渐近线方程为11D;解析:设P(x,y),则Q (-x,y), 由 A(),B(0,3y),- 从而由=(-x,y)(-,3y)=1 得其中x0,y0,故答案选D 12D;解析:静放在点的小球(小球的半径不计)从点沿直线出发,经椭圆壁右顶点反弹后第一次回到点时,小球经过的路程是,则选B;静放在点的小球(小球的半径不计)从点沿直线出发,经椭圆壁左顶点反弹后第一次回到点时,小球经过的路程是,则选C;静放在点的小球(小球的半径不计)从点沿直线出发,经椭圆壁非左右顶点反弹后第一次回到点时,小球经过的路程是,则选A由于三种情况均有可能,故选D二、填空题:13 (1,-2,3 ) (1,2,3) 4解析:过A作AMxOy交平面于M,并延长到C,使CM=AM,则A与C关于坐标平面xOy对称且C(1,2,3)过A作ANx轴于N,并延长到点B,使NB=AN,则A与B关于x轴对称且B(1,-2,3)A(1,2,-3)关于x轴对称的点B(1,-2,3 )又A(1,2,-3)关于坐标平面xOy对称的点C(1,2,3);|BC|=414 3解析:由题意知,直线的方程为,与抛物线联立得,求得交点的横坐标为或,又根据抛物线的定义得,=315 0解析:当时, ,当时, ,若则,上式显然不成立若,则016解析:|PM|-|PN|=6 点P在以M、N为焦点的双曲线的右支上,即(x0),将直线方程与其联立,方程组有解,判断其答案为三解答题17解:由题意设代入y2=2px得解得x=p(负值舍去) 6分A() 12分18解: (1) 因为动圆M,过点F且与直线相切,所以圆心M到F的距离等于到直线的距离所以,点M的轨迹是以F为焦点, 为准线的抛物线,且,所以所求的轨迹方程为 5分(2) 假设存在A,B在上,所以,直线AB的方程:,即 7分即AB的方程为:,即 即:, 10分令,得, 所以,无论为何值,直线AB过定点(4,0) 12分19解:()设,由勾股定理可得: 2分得:,由倍角公式,解得,则离心率 6分()过直线方程为,与双曲线方程联立将,代入,化简有 8分将数值代入,有,解得 10分故所求的双曲线方程为 12分20解: (1)设椭圆G的方程为: ()半焦距为c; 则 , 解得 , 所求椭圆G的方程为: 6分 (2)点的坐标为, 8分 (3)若,由可知点(6,0)在圆外, 若,由可知点(-6,0)在圆外;不论K为何值圆都不能包围椭圆G 12分21解:(1)设椭圆方程为则 2分椭圆方程 4分 (2)直线l平行于OM,且在轴上的截距为m又l的方程为:由 6分直线l与椭圆交于A、B两个不同点,m的取值范围是 (3)设直线MA、MB的斜率分别为k1,k2,只需证明k1k2=0即可设可得 8分而 10分k1k2=0故直线MA、MB与x轴始终围成一个等腰三角形 12分22 解:(1)因为椭圆E: (a,b0)过M(2,),N(,1)两点,所以解得所以椭圆E的方程为 4分(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为解方程组得,即,则=,即 要使,需使,即,所以,所以又, 所以,所以,即或,因为直线为圆心在原点的圆的一条切线,所以圆的半径为,所求的圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论