资源目录
压缩包内文档预览:
编号:6050946
类型:共享资源
大小:967.49KB
格式:RAR
上传时间:2017-11-02
上传人:闰***
认证信息
个人认证
冯**(实名认证)
河南
IP属地:河南
25
积分
- 关 键 词:
-
平面
连杆机构
动态
仿真
- 资源描述:
-


- 内容简介:
-
毕业设计(论文)开题报告题目 7R 六杆级机构的动态仿真专 业 名 称 机械设计与制造及其自动化班 级 学 号 078105118学 生 姓 名 施小康指 导 教 师 朱保利 填 表 日 期 2011 年 3 月 5 日一、选题的依据及意义:在机构学中,连杆机构有三种主要应用:输入输出运动转换、连杆的刚体导引及连杆上某一点的轨迹,对此在现有的经典教材及资料中作了较深入的研究及一些行之有效的方法。随着基础学科(微积分、数值计算、数值微积分等)的发展,且计算机运算速度大幅提高、内存容量增大,编程软件 FonraII、c 等的出现,学者们改为通过分析连杆机构的特性然后编写程序在绘图仪中打印出连杆点轨迹曲线,这无疑是一大进步,于是出现了一批以此方法为基础的连杆点曲线图册,供工程人员选用,但仍存在不方便之处,使用这类编程软件要从底层做起,当杆数增多时机构位置分析要涉及迭代与数值计算,且传统的编程软件对数值计算支持度极低,要编制相应子程序,这就加重了编程的难度。随着工具软件的不断完善,这些问题就显得简单。Matlab 是由美国新墨西哥大学教授 cleve M01er 于 1980 年提出并历经多年商业化完善的一种功能强大数值计算软件,困扰工程人员的数值微积分等问题应用 Madab 可轻易求解,尤其是 simlllirdc 是一种即拖即用的方框式模块化仿真工具箱,只需编制较少的脚本文件或 M 文件就可实现复杂的动态仿真,我以 MadabSimlllink 来解决连杆点轨迹曲线仿真问题。二、国内外研究概况及发展趋势(含文献综述):Matlab 是一种广泛应用于工程计算及数值分析领域的新型高级语言,自 1984 年推向市场以来,经过多年的发展与竞争,现已成为国际公认的最优秀的工程应用开发环境。在欧美各高等院校,Matlab 是线性代数、数值分析、数理统计、自动控制、数字信号处理、动态系统仿真、图像处理等课程的基本教学工具,已成为大学生必须掌握的基本技能之一。诸如应用代数、数理统计、自动控制、数字信号处理、模拟与数字通信、时间序列分析、动态系统仿真等课程的教科书都把MATLAB 作为内容。这几乎成了九十年代教科书与旧版书籍的区别性标志。在那里,MATLAB 是攻读学位的大学生、硕士生、博士生必须掌握的基本工具。在国际学术界,MATLAB 已经被确认为准确、可靠的科学计算标准软件。在许多国际一流学术刊物上, (尤其是信息科学刊物) ,都可以看到 MATLAB的应用。在设计研究单位和工业部门,MATLAB 被认作进行高效研究、开发的首选软件工具。如美国 National Instruments 公司信号测量、分析软件LabVIEW,Cadence 公司信号和通信分析设计软件 SPW 等,或者直接建筑在MATLAB 之上,或者以 MATLAB 为主要支撑。又如 HP 公司的 VXI 硬件,TM 公司的 DSP,Gage 公司的各种硬卡、仪器等都接受 MATLAB 的支持。目前 MATLAB 已经成为国际上最流行的科学与工程计算的软件工具,现在的 MATLAB 已经不仅仅是一个“矩阵实验室 ”了,它已经成为了一种具有广泛应用前景的全新的计算机高级编程语言了,它除了传统的交互式编程之外,还提供了丰富可靠的矩阵运算、图形绘制、数据处理、图形处理、Windows 编程等便利工具,MATLAB 语言的功能也越来越强大,不断适应新的要求提出新的解决方法。有人称它为“第四代”计算机语言,它在国内外高校和研究部门正扮演着重要的角色。可以预见,在科学运算、自动控制与科学绘图领域 MATLAB 语言将长期保持其独一无二的地位。随着 MATLAB 在中国的逐渐流行,它将成为在 PC 上进行机构运动及动力学仿真的理想工具。,三、研究内容及实验方案: 研究内容:1、外文翻译;2、MATLAB 软件的使用;3、平面连杆机构的组成原理;4、7R 六杆 III 级机构 MATLAB 运动学仿真模块;5、7R 六杆 III 级机构 MATLAB 动力学仿真模块;6、7R 六杆 III 级机构的设计;7、7R 六杆 III 级机构的运动学仿真;8、7R 六杆 III 级机构的动力学仿真。设计方案:1、收集有关资料、写开题报告;2、翻译外文资料;3、熟悉 MATLAB 软件;4、学习 7R 六杆 III 级机构及 MATLAB 运动学和动力学仿真;5、设计一个 7R 六杆 III 级机构;6、画出所设计的机构连杆图;7、7R 六杆 III 级机构的动态仿真;8、撰写毕业设计论文。四、目标、主要特色及工作进度1、目标: 采用 matlab 软件对 7R 六杆 III 级机构进行运动及动力仿真。2、MATLAB 主要特色 : 1)友好的工作平台和编程环境; 2) 简易的程序语言;3) 强大的科学计算机数据处理能力;4) 出色的图形处理能力;5) 实用的程序接口和发布平台。3、工作进度:1)收集资料、开题报告、外文翻译 2 周 3 月 1 日 - 3 月 11 日 2)熟悉 MATLAB 软件 3 周 3 月 12 日 - 4 月 2 日3)III 级杆组运动学和动力学仿真模块 3 周 4 月 3 日 - 4 月 26 日4)机构的运动学仿真 3 周 4 月 27 日 -5 月 10日 5)机构的动力学仿真 2 周 5 月 11 日 -5 月 25日 6)撰写毕业设计论文 2 周 5 月 26 日 - 6 月 1 日 五、参考文献1 孙桓,陈作模主编.机械原理.第七版.北京:高等教育出版社,2006.122 曲秀全主编.基于 MATLAB/Simulink 平面连杆机构的动态仿真.哈尔滨:哈尔滨工业大学出版社,2007.43 邱晓林主编. 基于 MATLAB 的动态模型与系统仿真工具 .西安:西安交通大学出版社,2003.104 张策主编. 机械动力学. 北京:高等教育出版社,20005 Ye Zhonghe, Lan Zhaohui. Mechanisms and Machine Theory. Higher Education Press, 2001.7南昌航空大学科技学院学士学位论文1目 录1 绪论 .(2)1.1 引言 .(2)1.2 平面连杆机构及杆组概述 .(2)1.3 进行杆组系统仿真的意义 .(3)1.4 仿真软件的发展状况与应用 .(3)1.5 MATLAB 概述 .(3)2 7R 六杆 级机构运动学仿真 .(5)2.1 曲柄原动件运动学分析 .(5)2.2 6R级杆组运动学分析 .(6)2.3 7R 六杆级机构 MATLAB 仿真积分模块初值的确定 .(11)2.4 7R 六杆级机构运动学仿真模型及结果 .(16)3 7R 六杆 级机构动力学仿真 .(23)3.1 曲柄原动件动力学数学模型的建立 .(23)3.2 6R级杆组动力学数学模型的建立 .(25)3.3 需要引用的函数 .(30)3.4 7R 六杆级机构运动学仿真模型及结果 .(32)4 结论 .(39)参考文献 .(40)致谢 .(41)南昌航空大学科技学院学士学位论文21 绪论1.1 引言大学的四年生活,通过老师的讲解和我自己的学习,我收获了很多,我也深深的喜欢上了机械这个行业,对机械加工和制造方面尤为感兴趣,我觉得通过自己的努力和思考来改变工艺规程来提高生产效率,提高经济效益很有成就感。我所研究的课题就是给了这样的机会我可以通过我的努力来优化工艺规程,提高经济效益。此次毕业设计,是在我们学完了机械制造工艺学、工艺装备设计等课程,进行了生产实习之后,进行的一个重要的实践性环节。这要求我们把所学的工艺理论和实践知识,在实际的工艺、夹具设计中综合地加以运用,这有助与提高了我们分析和解决生产实际问题的能力,为以后从事相关的技术工作奠定的基础。1.2 平面连杆机构及杆组概述平面连杆机构是将各构件用转动副或移动副联接而成的平面机构。最简单的平面连杆机构是由四个构件组成的,简称平面四杆机构。它的应用非常广泛,而且是组成多杆机构的基础。全部用回转副组成的平面四杆机构称为铰链四杆机构。仅能在某一角度摆动的连架杆,称为摇杆。对于铰链四杆机构来说,机架和连杆总是存在的,因此可按照连架杆是曲柄还是摇杆,将铰链四杆机构分为三种基本型式:曲柄摇杆机构、双曲柄机构和双摇杆机构。在实际机械中,平面连杆机构的型式是多种多样的,但其中绝大多数是在铰链四杆机构的基础上发展和演化而成。如曲柄滑块机构、导杆机构等。任何机构都是由原动件、机架和从动件构成的系统。由于机架的自由度为零,一般每个原动件的自由度为 1,且根据运动链成为机构的条件可知,机构的自由度与原动件为应相等,所以,从动件系统的自由度数必为零。机构的从动件系统还可以进一步分解成若干个不可再分的自由度为零的构件组合,这种组合称为杆组。设n 表示活动构件数,PL 表示低副个数,根据 n 的取值不同,村级可分为级杆组和级杆组。其中级杆组分为 5 种:RRR级杆组、RRP级杆组、RPR级杆组、PRP 级杆组以及 RPP 级杆组。任何机构都可以看作是由若干个基本村级依次联接于原动件和机架而构成的,这就是所谓机构的组成原理。通常,把由最高级别为级杆组的基本杆组构成的机构称为级机构;把最高级为级杆组的基本杆组构成的机构称为级机构。南昌航空大学科技学院学士学位论文31.3 进行杆组系统仿真的意义系统仿真是建立在控制理论、相似理论、信息处理技术和计算机初等理论基础之上的,以计算机和其他专用物理效应设备为工具,利用系统模型对真实或假设的系统进行试验,并借助于专家的经验知识、统计数据和信息资料对实验结果进行分析研究,进而做出决策的一门综合的实验性学科。仿真技术是分析、研究各种系统,尤其是复杂系统的重要工具。随着机械行业的迅速发展,对研究、设计的机械设备越来越复杂,用于制造各种零件的材料价格越来越昂贵,不可能每一步都采取试制再修改的方法进行设计,采用仿真的方法可以在一定程度上克服这种不足的不足,降低研究成本,提高效率。而连杆机构作为常见的传动机构,对其进行运动学和动力学仿真,建立起基本杆组模块的仿真模型,无疑对日后的设计大有裨益。一般机构的运动分析,使用Quik BASIC语言或Fortran语言编写程序进行计算,其缺点“透明性”差,修改麻烦等而用MATLAB 对机构进行运动仿真,利用MATLAB的simulink仿真模型的数据可视化的特点,就可以很容易观察到运动参数是如何变化的,极其简便同时,用MATLAB建立和修改仿真模型具有方便、快捷、很容易扩展等优点MATLAB仿真求解器提供很多解不同微分方程的方法,可以根据不同的微分方程类型选择相应的求解方法机构的动力学分析,由已知工作阻力,求出运动副的约束反力和驱动力(或力矩) ,为选择和设计轴承和零部件强度的计算及选择原动机提供理论依据。1.4 仿真软件的发展状况与应用早期的计算机仿真技术大致经历了几个阶段:20 世纪 40 年代模拟计算机仿真;50 年代初数字仿真;60 年代早期仿真语言的出现等。80 年代出现的面向对象仿真技术为系统仿真方法注入了活力。我国早在 50 年代就开始研究仿真技术了,当时主要用于国防领域,以模拟计算机的仿真为主。70 年代初开始应用数字计算机进行仿真4 。随着数字计算机的普及,近 20 年以来,国际、国内出现了许多专门用于计算机数字仿真的仿真语言与工具,如 CSMP,ACSL , SIMNOM, MATLAB/Simulink, Matrix/System Build, CSMP-C 等。1.5 MATLAB 概述MATLAB 是国际上仿真领域最权威、最实用的计算机工具。它是 MathWork 公司于 1982 年推出的一套高性能的数值计算和可视化数学软件,被誉为“巨人肩上的南昌航空大学科技学院学士学位论文4工具” 。MATLAB 是一种应用于计算技术的高性能语言。它将计算,可视化和编程结合在一个易于使用的环境中,此而将问题解决方案表示成我们所熟悉的数学符号,其典型的使用包括:.数学计算.运算法则的推导.模型仿真和还原.数据分析,采集及可视化.科技和工程制图.开发软件,包括图形用户界面的建立MATLAB 是一个交互式系统,它的基本数据元素是矩阵,且不需要指定大小。通过它可以解决很多技术计算问题,尤其是带有矩阵和矢量公式推导的问题,有时还能写入非交互式语言如 C 和 Fortran 等。MATLAB 的名字象征着矩阵库。它最初被开发出来是为了方便访问由LINPACK 和 EISPAK 开发的矩阵软件,其代表着艺术级的矩阵计算软件。MATLAB 在拥有很多用户的同时经历了许多年的发展时期。在大学环境中,它作为介绍性的教育工具,以及在进阶课程中应用于数学,工程和科学。在工业上它是用于高生产力研究,开发,分析的工具之一。Simulink 概述 Simulink 是用于仿真建模及分析动态系统的一组程序包,它支持线形和非线性系统,能在连续时间,离散时间或两者的复合情况下建模。系统也能采用复合速率,也就是用不同的部分用不同的速率来采样和更新。Simulink 提供一个图形化用户界面用于建模,用鼠标拖拉块状图表即可完成建模。在此界面下能像用铅笔在纸上一样画模型。相对于以前的仿真需要用语言和程序来表明不同的方程式而言有了极大的进步。Simulink 拥有全面的库,如接收器,信号源,线形及非线形组块和连接器。同时也能自己定义和建立自己的块。模块有等级之分,因此可以由顶层往下的步骤也可以选择从底层往上建模。可以在高层上统观系统,然后双击模块来观看下一层的模型细节。这种途径可以深入了解模型的组织和模块之间的相互作用。南昌航空大学科技学院学士学位论文52 7R六杆级机构运动学仿真2.1 曲柄原动件运动学分析2.1.1 曲柄原动件运动学数学模型的建立如图1所示,在复数坐标系中,曲柄AB复向量的模 rj为常数、幅角j为变量,通过转动副A与机架连接,转动副A的复向量的模r i为常量、幅角i为常量,曲柄AB端点 B的位移、速度和加速度的推导如下:(2.1)jijijjji errABe,将方程 2.1 两边对时间 t 求两次导数得:(2.2))2/()2/( jj jje由式 2.2 写成矩阵形式有(2.3) )sin()2/sin(cocoImRe jjjj jjjj rrB2.1.2 曲柄 MATLAB 运动学仿真模块 M 函数根据式(2.3)编写曲柄原动件 MATLAB 的 M 函数如下:function y=crank(x)%x(1)=rj 曲柄杆长%x(2)=thetaj 曲柄与水平方向夹角%x(3)=dthetaj 曲柄角速度%x(4)=ddthetaj 曲柄角加速度%y(1)=ReddB 转动副 B 加速度实轴分量图 1 曲柄的复数坐标系南昌航空大学科技学院学士学位论文6%y(2)=ImddB 转动副 B 加速度虚轴分量ddB=x(1)*x(4)*cos(x(2)+pi/2)+x(1)*x(3)2*cos(x(2)+pi);x(1)*x(4)*sin(x(2)+pi/2)+x(1)*x(3)2*sin(x(2)+pi);y=ddB;此函数模块用于计算转动副 B 的加速度的水平分量和垂直分量输入参数为曲柄的长度、角位移、角速度和角加速度;输出参数为曲柄端部(转动副 B)的加速度的水平分量和垂直分量。2.2 6R级杆组运动学分析2.2.1 6R级杆组运动学数学模型的建立如图2所示,在复数坐标系中,由3个外转动副(B,C,D) 和3个内转动副(E,F,G),4 个构件(BE,CF,DG和EFG)构成1个6R级杆组,构件BE,CF,DG的长度分别为r i, rj, rk构件EFG的3个边为e,f ,g,方向如图所示,规定所有复向量与实轴正方向逆时针夹角为,并用相应的下标来区别,用 B,C,D,E,F和G 分别表示该转动副的复数坐标,则各个构件的运动参数推导如下:(2.4)kjijjierDGCFerBE(2.5)gfejjjeEFgfe图 2 6R级杆组的位置参数南昌航空大学科技学院学士学位论文7将式(2.4)代入式(2.5)并整理得:(2.6)BDfereCgrfki ekjji jjj jjjj 将式(2.4)至式 (2.6)三式合并成矩阵得: BDCfeerer eer gefeerer eer gegfekji jjkjijj jjigfekji jjkji jj jji fi kji fi kji222 )()()()()( )()( )2/()2/()2/( )2/()2/( )2/()/( 000 000 000 (2.7)将式(2.7)展开整理得: 0)2sin(0)2sin(0)2sin( cococo 0)2sin()i()2cos(0 0co2s )2sin(00)()2sin( co02cosco fk fekiiii gjjjj rrrrrr南昌航空大学科技学院学士学位论文8 BDCB frr er rrgfekji fkii jj k iijjiigfekjiImRIe 0)cos(0)cos(0)sn(co )sin(i)si(cc )cs()s( o00222 (2.8)点 E,F,G 的加速度分别为 222)sin(co)2sin(coImReIe )sin(co)2sin(coIeIe )sin(co)2sin(coImReIe kkkkk jjjjjj iiiiii rrDG rrCF rrB (2.9)2.2.2 6R级杆组 MATLAB 运动学仿真模块 M 函数根据式(2.9)编写 6R级杆组 MATLAB 的 M 函数如下:function y=R6ki(x)%x(1)=ri BE 杆长%x(2)=rj CF 杆长%x(3)=rk DG 杆长南昌航空大学科技学院学士学位论文9%x(4)=e FG 杆长%x(5)=f GE 杆长%x(6)=g EF 杆长%x(7)=theta-i BE 杆与水平方向夹角%x(8)=theta-j DF 杆与水平方向夹角%x(9)=theta-k DG 杆与水平方向夹角%x(10)=theta-e FG 杆与水平方向夹角%x(11)=theta-f GE 杆与水平方向夹角%x(12)=theta-g EF 杆与水平方向夹角%x(13)=dtheta-i BE 杆角速度%x(14)=dtheta-j EF 杆角速度%x(15)=dtheta-k DG 杆角速度%x(16)=dtheta-e GE 杆角速度%x(17)=dtheta-f GE 杆角速度%x(18)=dtheta-g EF 杆角速度%x(19)=ReddB 转动副 B 加速度实轴分量%x(20)=ImddB 转动副 B 加速度虚轴分量%x(21)=ReddC 转动副 C 加速度实轴分量%x(22)=ImddC 转动副 C 加速度虚轴分量%x(23)=ReddD 转动副 D 加速度实轴分量%x(24)=ImddD 转动副 D 加速度虚轴分量%y(1)=ddtheta-i BE 杆角加速度%y(2)=ddtheta-j CF 杆角加速度%y(3)=ddtheta-k DG 杆角加速度%y(4)=ddtheta-e FG 杆角加速度%y(5)=ddtheta-f GE 杆角加速度%y(6)=ddtheta-f EF 杆角加速度%y(7)=ReddE 转动副 E 加速度实轴分量%y(8)=ImddE 转动副 E 加速度虚轴分量%y(9)=ReddF 转动副 F 加速度实轴分量%y(10)=ImddF 转动副 F 加速度虚轴分量南昌航空大学科技学院学士学位论文10%y(11)=ReddG 转动副 G 加速度实轴分量%y(12)=ImddG 转动副 G 加速度虚轴分量a=-x(1)*cos(x(7)+pi/2) x(2)*cos(x(8)+pi/2) 0 0 0 -x(6)*cos(x(12)+pi/2);-x(1)*sin(x(7)+pi/2) x(2)*sin(x(8)+pi/2) 0 0 0 -x(6)*sin(x(12)+pi/2);0 -x(2)*cos(x(8)+pi/2) x(3)*cos(x(9)+pi/2) -x(4)*cos(x(10)+pi/2) 0 0;0 -x(2)*sin(x(8)+pi/2) x(3)*sin(x(9)+pi/2) -x(4)*sin(x(10)+pi/2) 0 0;x(1)*cos(x(7)+pi/2) 0 -x(3)*cos(x(9)+pi/2) 0 -x(5)*cos(x(11)+pi/2) 0;x(1)*sin(x(7)+pi/2) 0 -x(3)*sin(x(9)+pi/2) 0 -x(5)*sin(x(11)+pi/2) 0;c=-x(1)*cos(x(7)+pi) x(2)*cos(x(8)+pi) 0 0 0 -x(6)*cos(x(12)+pi);-x(2)*sin(x(7)+pi) x(2)*sin(x(8)+pi) 0 0 0 -x(6)*sin(x(12)+pi);0 -x(2)*cos(x(8)+pi) x(3)*cos(x(9)+pi) -x(4)*cos(x(10)+pi) 0 0;0 -x(2)*sin(x(8)+pi) x(3)*sin(x(9)+pi) -x(4)*sin(x(10)+pi) 0 0;x(1)*cos(x(7)+pi) 0 -x(3)*cos(x(9)+pi) 0 -x(5)*cos(x(11)+pi) 0;x(1)*sin(x(7)+pi) 0 -x(3)*sin(x(9)+pi) 0 -x(5)*sin(x(11)+pi) 0;b1=c*x(13)2;x(14)2;x(15)2;x(16)2;x(17)2;x(18)2;b2=x(19)-x(21);x(20)-x(22);x(21)-x(23);x(22)-x(24);x(23)-x(19);x(24)-x(20);b=b1+b2;ddtheta=inv(a)*b;y(1)=ddtheta(1);y(2)=ddtheta(2);y(3)=ddtheta(3);y(4)=ddtheta(4);y(5)=ddtheta(5);y(6)=ddtheta(6);y(7)=x(19)+x(1)*ddtheta(1)*cos(x(7)+pi/2)+x(1)*x(13)2*cos(x(7)+pi);y(8)=x(20)+x(1)*ddtheta(1)*sin(x(7)+pi/2)+x(1)*x(13)2*sin(x(7)+pi);y(9)=x(21)+x(2)*ddtheta(2)*cos(x(8)+pi/2)+x(2)*x(14)2*cos(x(8)+pi);y(10)=x(22)+x(2)*ddtheta(2)*sin(x(8)+pi/2)+x(2)*x(14)2*sin(x(8)+pi);y(11)=x(23)+x(3)*ddtheta(3)*cos(x(9)+pi/2)+x(3)*x(15)2*cos(x(9)+pi);y(12)=x(24)+x(3)*ddtheta(3)*sin(x(9)+pi/2)+x(3)*x(15)2*sin(x(9)+pi);这个模块用于求级杆组中各杆的加速度的水平及垂直分量。输入参数为构件南昌航空大学科技学院学士学位论文112、构件 3 的角位移和角速度,构件 2、构件 3 和构件 4 的杆长,构件 5 的 3 个边长,构件 2、构件 3、构件 4 的角位移和角速度,构件 5 的 3 个边向量的角位移和 3 个转动副 B,C,D 的加速度;输出参数为构件 2、构件 3 和构件 4 的角加速度,构件 5 的3 个边向量的角加速度和转动副 E,F,G 的加速度。2.3 7R 六杆级机构 MATLAB 仿真积分模块初值的确定2.3.1 运用牛顿辛普森法进行角位移分析图 3 所示是由原动件(曲柄 1)和一个 6R级杆组所组成的 7R 六杆级机构,复数向量坐标亦如图所示,各构件的尺寸为r1=120mm,r 2=400mm,r 3=300mm,r 4=300mm,ReD=250mm,FG=450mm,GE=180mm,EF=350mm ,ImD=350mm,ReC=700mm , ImC=350mm,构件 1 以等角速度10rad/s 逆时针方向回转,试求构件 2 和构件 3 的位移、速度和加速度。由图 3 可列以下三个方程:AB+BEAD-DG EG=0,即 r1+r2-AD-r4-f=0 (2.10)AB+BE+EF-AC-CF=0即 r1+r2+g-AC-r3=0 (2.11)EF+FG+GE=0,即 g+e+f=0 (2.12)由复向量坐标,可写出式(2.10)、式(2.11) 及式(2.12) 的角位移方程为:(2.13)0421 fADjjjjj ereer 图 3 7R 六杆级机构南昌航空大学科技学院学士学位论文12(2.14)0321 jjjjj erACegre Ag(2.15)0 gfejjjf将式(2.13)、式 (2.14)、式 (2.15)展开,整理得: 0)sin()si()sin(),( cocco 0)sin()si(iii, coc)()s()s()( iisinini, )s()s(cococ 32132 42142 gfegfe ff gACg fDf fAf f rrrf frrrf (2.16)由式(2.16)求出雅可比矩阵为: )cos()cos()cos(00 ininin0)cos()cos( )s(ini 0)cos(0)cs(0ini)s(32 42 gfe gffrr frrJ (2.17)根据式(2.16) 、式(2.17) ,由牛顿 辛普森求解方法得编制 M 函数如下:function y=r6posi(x)%x(1)=theta-1 杆 1 与水平方向夹角%x(2)=theta-2 杆 2 与水平方向夹角(估计量)%x(3)=theta-3 杆 3 与水平方向夹角(估计量)%x(4)=theta-4 杆 4 与水平方向夹角(估计量)%x(5)=theta-e 杆 e 与水平方向夹角(估计量)%x(6)=theta-f 杆 f 与水平方向夹角(估计量)%x(7)=theta-g 杆 g 与水平方向夹角(估计量)%x(8)=theta-AC AC 与水平方向夹角%x(9)=theta-AD AD 与水平方向夹角%x(10)=r1 杆 1 长度%x(11)=r2 杆 2 长度南昌航空大学科技学院学士学位论文13%x(12)=r3 杆 3 长度%x(13)=r4 杆 4 长度%x(14)=e 杆 e 长度%x(15)=f 杆 f 长度%x(16)=g 杆 g 长度%x(17)=AC 杆 AC 长度%x(18)=AD 杆 AD 长度%y(1)=theta-2 2 杆与水平方向夹角%y(2)=theta-3 3 杆与水平方向夹角%y(3)=theta-4 4 杆与水平方向夹角%y(4)=theta-e e 杆与水平方向夹角%y(5)=theta-f f 杆与水平方向夹角%y(6)=theta-g g 杆与水平方向夹角%theta2=x(2);theta3=x(3);theta4=x(4);theta5=x(5);theta6=x(6);theta7=x(7);%epsilon=1.0E-6;%f=x(10)*cos(x(1)+x(11)*cos(theta2)-x(18)*cos(x(9)-x(13)*cos(theta4)-x(15)*cos(theta6);x(10)*sin(x(1)+x(11)*sin(theta2)-x(18)*sin(x(9)-x(13)*sin(theta4)-x(15)*sin(theta6);x(10)*cos(x(1)+x(11)*cos(theta2)+x(16)*cos(theta7)-x(17)*cos(x(8)-x(12)*cos(theta3);x(10)*sin(x(1)+x(11)*sin(theta2)+x(16)*sin(theta7)-x(17)*sin(x(8)-x(12)*sin(theta3);x(14)*cos(theta5)+x(15)*cos(theta6)+x(16)*cos(theta7);x(14)*sin(theta5)+x(15)*sin(theta6)+x(16)*sin(theta7);%南昌航空大学科技学院学士学位论文14while norm(f) epsilonJ= -x(11)*sin(theta2) 0 x(13)*sin(theta4) 0 x(15)*sin(theta6) 0;x(11)*cos(theta2) 0 -x(13)*cos(theta4) 0 -x(15)*cos(theta6) 0;-x(11)*sin(theta2) x(12)*sin(theta3) 0 0 0 -x(16)*sin(theta7);x(11)*cos(theta2) -x(12)*cos(theta3) 0 0 0 x(16)*cos(theta7);0 0 0 -x(14)*sin(theta5) -x(15)*sin(theta6) -x(16)*sin(theta7);0 0 0 x(14)*cos(theta5) x(15)*cos(theta6) x(16)*cos(theta7);dth=inv(J)*(-1.0*f);theta2=theta2+dth(1);theta3=theta3+dth(2);theta4=theta4+dth(3);theta5=theta5+dth(4);theta6=theta6+dth(5);theta7=theta7+dth(6);f=x(10)*cos(x(1)+x(11)*cos(theta2)-x(18)*cos(x(9)-x(13)*cos(theta4)-x(15)*cos(theta6);x(10)*sin(x(1)+x(11)*sin(theta2)-x(18)*sin(x(9)-x(13)*sin(theta4)-x(15)*sin(theta6);x(10)*cos(x(1)+x(11)*cos(theta2)+x(16)*cos(theta7)-x(17)*cos(x(8)-x(12)*cos(theta3);x(10)*sin(x(1)+x(11)*sin(theta2)+x(16)*sin(theta7)-x(17)*sin(x(8)-x(12)*sin(theta3);x(14)*cos(theta5)+x(15)*cos(theta6)+x(16)*cos(theta7);x(14)*sin(theta5)+x(15)*sin(theta6)+x(16)*sin(theta7);norm(f)end;y(1)=theta2;y(2)=theta3;y(3)=theta4;y(4)=theta5;y(5)=theta6;y(6)=theta7;此函数模块的输入量为杆 1 与水平方向的夹角、其余各杆与水平方向夹角的估计值以及杆的杆长及 AC、AD 两个收入参量的杆长和角度的估计值,输出参量为2,3,4,E,F,G 杆与水平方向的夹角。南昌航空大学科技学院学士学位论文157R 六杆 级机构在图 1.3.1 所示位置,估计构件 2,3,4,e,f,g 的角位移为2=5.9341rad, 3=1.9199rad, 4=1.9199rad,e=0, f=2.3562rad, g=0.3491。输入参数 x=40*pi/180 340*pi/180 110*pi/180 110*pi/180 0 135*pi/180 20*pi/180 atan(350/700) atan(350/250) 120 400 300 300 450 180 350 sqrt(3502+7002) sqrt(3502+2502),解得 2=-0.3725rad, 3=-1.2735rad, 4=-1.2735rad, e=3.1416rad, f=-0.8040rad, g=0.3794rad。2.3.2 运用牛顿辛普森法进行角速度分析对式(2.10)-式(2.12) 求导并展开成矩阵形式为:(2.18)根据式(2.18) 编写 M 函数如下:function y=r6vel(x)%x(1)=theta-1 杆 1 与水平方向夹角%x(2)=theta-2 杆 2 与水平方向夹角%x(3)=theta-3 杆 3 与水平方向夹角%x(4)=theta-4 杆 4 与水平方向夹角%x(5)=theta-e 杆 e 与水平方向夹角%x(6)=theta-f 杆 f 与水平方向夹角%x(7)=theta-g 杆 g 与水平方向夹角%x(8)=dtheta-1 杆 1 角速度%x(9)=r1 杆 1 长度 111 132 424320cosin )cos()cs()cos(00 iniin0)cos()cs( )(ini )cos()cs(0ini)( r gferr fr fe gfgfe南昌航空大学科技学院学士学位论文16%x(10)=r2 杆 2 长度%x(11)=r3 杆 3 长度%x(12)=r4 杆 4 长度%x(13)=e 杆 e 长度%x(14)=f 杆 f 长度%x(15)=g 杆 g 长度%y(1)=dtheta-2 杆 2 角加速度%y(2)=dtheta-3 杆 3 角加速度%y(3)=dtheta-4 杆 4 角加速度%y(4)=dtheta-e 杆 e 角加速度%y(5)=dtheta-f 杆 f 角加速度%y(6)=dtheta-g 杆 g 角加速度A= -x(10)*sin(x(2) 0 x(12)*sin(x(4) 0 x(14)*sin(x(6) 0;x(10)*cos(x(2) 0 x(12)*cos(x(4) 0 x(14)*sin(x(6) 0;-x(10)*sin(x(2) x(11)*sin(x(3) 0 0 0 -x(15)*sin(x(7);x(10)*cos(x(2) -x(11)*cos(x(3) 0 0 0 x(15)*cos(x(7);0 0 0 -x(13)*sin(x(5) -x(14)*sin(x(6) -x(15)*sin(x(7);0 0 0 x(13)*cos(x(5) x(15)*cos(x(6) x(15)*cos(x(7);B=x(10)*sin(x(1);-x(10)*cos(x(1);x(10)*sin(x(1);-x(10)*cos(x(1);0;0*x(8);y=inv(A)*B;此函数模块输入量为各杆与水平方向的角度以及杆 1 的角速度,输出参数为2,3,4,E,F,G 杆的角加速度。图 3 所示机构,由位移分析计算出的各杆角度和曲柄 1 的角速度为 10rad/s,则输入参数为: x= 40*pi/180 -0.3725 -1.2735 -1.2735 3.1416 -0.8040 0.3794 10 120 400 300 300 450 180 350,代入上面的 M 文件,求得2,3,4,e, f,g 杆的角速度依次分别为 -3.49rad/s,-4.5298rad/s,-4.5298rad/s, 0rad/s,0rad/s,0rad/s。2.4 7R六杆级机构运动学仿真模型及结果2.4.1 7R六杆级机构图 3 所示是由原动件(曲柄 1)和 1 个 6R级杆组所组成的 7R 六杆级机构,复数向量坐标如图 1.4.1 所示,各构件的尺寸为的r1=120mm,r 2=400mm,r 3=300mm,r 4=300mm,ReD=250mm,FG=450mm,GE=18南昌航空大学科技学院学士学位论文170mm,EF=350mm ,ImD=350mm,ReC=700mm , ImC=350mm,构件 1 以等角速度10rad/s 逆时针方向回转,试求构件 2 和构件 3 的位移、速度、加速度。2.4.2 7R 六杆级机构 MATLAB 运动学仿真模型7R 六杆 级机构 MATLAB 运动学仿真模型如图 2.4.2 所示,在图 2.4.2 中各积分模块的初值是以曲柄 1 的幅角为 0.72rad 和角速度等于 10rad/s 逆时针方向回转时,相应各个构件的位移、速度的瞬时值,2 个 MATLAB 函数模块分别为 crank.m 和r6ki.m,其中 crank.m 函数模块的输入参数为曲柄的长度、角位移、角速度和角加速度;输出参数为曲柄端部(转动副 B)的加速度的水平分量和垂直分量;r6ki.m 函数模块的输入参数为构件 2、构件 3 的角位移和角速度,构件 2、构件 3 和构件 4 的杆长,构件 5 的 3 个边长,构件 2、构件 3、构件 4 的角位移和角速度,构件 5 的 3 个边向量的角位移和 3 个转动副 B,C,D 的加速度;输出参数为构件 2、构件 3 和构件4 的角加速度,构件 5 的 3 个边向量的角加速度和转动副 E,F,G 的加速度。每个数据线上标注了相应变量,常量模块放置了各个构件的尺寸,长度分别为 m,角度单位为 rad。设置仿真时间为 1s,仿真结果输出到工作空间变量 simout 中,输出格式为 array,求解器选用 ode45,步长选用变步长。2.4.3 7R 六杆级机构 MATLAB 运动学仿真结果由于曲柄转速为 10rad/s,因此每转动 1 周的时间是 0.628s,用绘图命令plot(tout,simout(:,1),plot(tout,simout(:,2),plot(tout,simout(:,5),plot(tout,simout(:,6),plot(tout,simout(:,9),plot(tout,simout(:,10),plot(tout,simout(:,3),plot(tout,simout(:,4)绘制出构件 2 和构件 3 的位移、速度、加速度,构件 4 的位移、向量 e 的位移,如图 2.4.3 所示。从该图中可以看出这些参数也都是周期变化的。从图 3 所给出的各个构件的尺寸可以看出,由构件 3,4,5,6 构成平行四边形,因此构件 5 就作平动,复数向量 e,f,g 的角位移为常量、角速度为零。从图 6(g)中看出复数向量 e 仿真结果确实如此 。同时构件 3, 4 的角位移、角速度、角加速度应该相同,比较图 6(b)和(h)曲线也相同,这两组也说明了所推导的 6R级杆组的运动学仿真公式及相应的 M 函数和仿真模型是正确的。南昌航空大学科技学院学士学位论文18南昌航空大学科技学院学士学位论文20南昌航空大学科技学院学士学位论文21图 6(a) 构件 2 的角位移(纵坐标表示角位移的大小,单位为 rad;横坐标表示时间,单位为 s。)图 6(b) 构件 3 的角位移 (纵坐标表示角位移的大小,单位为 rad;横坐标表示时间,单位为 s。)南昌航空大学科技学院学士学位论文22图 6(c) 构件 3 的角速度(纵坐标表示角速度的大小,单位为 rad/s;横坐标表示时间,单位为 s。)图 6(d) 构件 2 的角速度(纵坐标表示角位移的大小,单位为 rad/s;横坐标表示时间,单位为 s。)南昌航空大学科技学院学士学位论文23图 6(e) 构件 2 的角加速度(纵坐标表示角加速度的大小,单位为 rad/s2;横坐标表示时间,单位为 s。)图 6(f) 构件 3 的角加速度(纵坐标表示角加速度的大小,单位为 rad/s2;横坐标表示时间,单位为 s。)南昌航空大学科技学院学士学位论文24图 6(g) 向量 e 的角位移(纵坐标表示角位移的大小,单位为 rad;横坐标表示时间,单位为 s。)图 6(h) 构件 4 的角位移(纵坐标表示角位移的大小,单位为 rad;横坐标表示时间,单位为 s。)南昌航空大学科技学院学士学位论文253 7R六杆级机构动力学仿真3.1 曲柄原动件动力学数学模型的建立3.1.1 曲柄原动件动力学数学分析如图 7 所示,已知曲柄 AB 向量的模 ri 为常数,幅角 i 为变量,质心到转动副A 的距离为 rci,质量为 mi,绕质心转动惯量为 Ji,作用于质心上的外力为 Fxi 和Fyi、外力矩为 Mi,曲柄与机架联接,转动副 A 的约束反力为 Rxa 和 Rya,驱动力矩为 Ml。由理论力学可得:(3.1)iixixBxAsmFRe(3.2)iiiyiygI(3.3) i iciicixByAxAJrrRMos)(sn)(1由运动学知识可推得:(3.4)cos()2/cos(Re2 iiiii rrAs(3.5)nnImiiciici将式(3.4) 、式(3.5)代入式(3.1) 、式(3.2) ,并与式(3.3)合并得:图 7 曲柄的受力模型南昌航空大学科技学院学士学位论文26 iiciiyBiciixBiciyAicixAi iyiiiiiei xBiiiciiciyAx MrRrRrrRJ gmFmmrrM os)(sn)(ossn)()2/(oss21(3.6)3.1.2 曲柄 MATLAB 动力学仿真模块 M 函数根据式(3.6)编写曲柄原动件 MATLAB 的 M 函数如下:function y=crankdy(x)%x(1)=theta-i 曲柄与水平方向夹角%x(2)=dtheta-i 曲柄角速度%x(3)=ddtheta-i 曲柄角加速度%x(4)=RxB 转动副 B 约束反力水平分量%x(5)=RyB 转动副 B 约束反力垂直分量%y(1)=RxA 转动副 A 约束反力水平分量%y(2)=RyA 转动副 A 约束反力垂直分量%y(3)=M1 转动副 A 的驱动力矩%g=9.8ri=0.4;rci=0.2;mi=1.2;Ji=0.016;Fxi=0;Fyi=0;Mi=0;ReddA=0;ImddA=0;y(1)=mi*ReddA+mi*rci*x(3)*cos(x(1)+pi/2)+mi*rci*x(2)2*cos(x(1)+pi)-Fxi+x(4);y(2)=mi*ImddA+mi*rci*x(3)*sin(x(1)+pi/2)+mi*rci*x(2)2*sin(x(1)+pi)-Fyi+x(5)+mi*g;y(3)=Ji*x(3)-y(1)*rci*sin(x(1)+y(2)*rci*cos(x(1)-x(4)*(ri-rci)*sin(x(1)+x(5)*(ri-rci)*cos(x(1)-Mi;此函数模块转用于求动副 A 的约束反力和曲柄上作用的驱动力矩。输入参数是曲柄原动件的角位移、角速度和角加
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。