



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4高考数学考前归纳总结复习题19-导数中的求参数取值范围问题导数中的求参数取值范围问题1、 常见基本题型: (1)已知函数单调性,求参数的取值范围,如已知函数增区间,则在此区间上导函数,如已知函数减区间,则在此区间上导函数。 (2)已知不等式恒成立,求参数的取值范围问题,可转化为求函数的最值问题。例1.已知R,函数.(R,e为自然对数的底数) (1)若函数内单调递减,求a的取值范围;(2)函数是否为R上的单调函数,若是,求出a的取值范围;若不是,请说明理由. 解: (1) =. 上单调递减, 则 对 都成立, 对都成立. 令,则 , . (2)若函数在R上单调递减,则 对R 都成立, 即 对R都成立. 对R都成立,令, 图象开口向上 不可能对R都成立 若函数在R上单调递减,则 对R 都成立,即 对R都成立, 对R都成立.,故函数不可能在R上单调递增.综上可知,函数不可能是R上的单调函数 例2:已知函数,若函数的图像在点处的切线的倾斜角为,对于任意,函数在区间上总不是单调函数,求的取值范围; 解: 令得, 故两个根一正一负,即有且只有一个正根 函数在区间上总不是单调函数 在上有且只有实数根 故, 而单调减, ,综合得 例3.已知函数()求函数的单调区间;()设,若对任意,不等式 恒成立,求实数的取值范围 解:(I)的定义域是 由及 得;由及得, 故函数的单调递增区间是;单调递减区间是 (II)若对任意,不等式恒成立, 问题等价于, 由(I)可知,在上,是函数极小值点,这个极小值是唯一的极值点,故也是最小值点,所以; 当时,;当时,;当时,; 问题等价于 或 或 ,解得 或 或 即,所以实数的取值范围是。 例4设函数, (1)当a0时,f(x)h(x)在(1,)上恒成立,求实数m的取值范围; (2)当m2时,若函数k(x)f(x)h(x)在1,3上恰有两个不同零点,求实数a的取值范围解:(1)由a0,f(x)h(x),可得mlnxx,x(1,),即m.记(x),则f(x)h(x)在(1,)上恒成立等价于m(x)min.,求得(x)当x(1,e),(x)0;当x(e,)时,(x)0.故(x)在xe处取得极小值,也是最小值,即(x)min(e)e,故me.(2) 函数k(x)f(x)h(x)在1,3上恰有两个不同的零点等价于方程x2lnxa, 在1,3上恰有两个相异实根 令g(x)x2ln,则g(x)1.当x1,2)时,g(x)0;当x(2,3时,g(x)0.g(x)在(1,2)上是单调递减函数,在(2,3上是单调递增函数故g(x)ming(2)22ln2.又g(1)1,g(3)32ln3,g(1)g(3),只需g(2)ag(3)故a的取值范围是(2ln2,32ln3. 二、针对性练习 1.已知函数若函数在1,4上是减函数,求实数a的取值范围。 解:由,得 又函数为1,4上的单调减函数。则在1,4上恒成立, 所以不等式在1,4上恒成立即在1,4上恒成立。 设,显然在1,4上为减函数, 所以的最小值为 的取值范围是 2.已知函数 (1)若存在,使成立,求的取值范围; (2)当时,恒成立,求的取值范围. 解:(1)即 令 时,时, 在上减,在上增. 又时,的最大值在区间端点处取到. , 在上最大值为 故的取值范围是, (3)由已知得时,恒成立,设由(2)知当且仅当时等号成立,故,从而当即时,为增函数,又于是当时,即,时符合题意. 由可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东省济南市2024-2025学年高一下学期7月期末地理试题(解析版)
- 本人服务质量承诺书(7篇)
- 2025-2026学年湖南省高三上学期阶段性检测(一)英语试题(解析版)
- 2025春季中国太平校园招聘模拟试卷及完整答案详解一套
- 2025河北唐山幼儿师范高等专科学校选聘工作人员35人考前自测高频考点模拟试题及答案详解(必刷)
- 餐饮业菜品成本计算与控制工具
- 行业领域企业社会责任承诺书(3篇)
- 2025年河北秦皇岛工业职业技术学院招聘专任教师3人模拟试卷附答案详解(典型题)
- 数据分析师数据处理与分析报告框架
- 2025湖北恩施市福牛物业有限公司招聘18人考前自测高频考点模拟试题附答案详解(模拟题)
- 销售市场每周工作汇报表
- 2023-2024学年山东省泰安市肥城市白云山学校六年级(上)月考数学试卷(含解析)
- 语法填空-动词公开课一等奖市赛课获奖课件
- 中医病证诊断疗效
- 深静脉血栓形成的诊断和治疗指南第三版
- 春之声圆舞曲-教学设计教案
- 农业政策学 孔祥智课件 第08章 农业土地政策
- WB/T 1119-2022数字化仓库评估规范
- GB/T 16463-1996广播节目声音质量主观评价方法和技术指标要求
- GB/T 15972.20-2021光纤试验方法规范第20部分:尺寸参数的测量方法和试验程序光纤几何参数
- 胎儿的发育课件
评论
0/150
提交评论