


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次方程的解法(配方法)教学背景:在教学中最关键的是让学生掌握配方,配方的对象是含有未知数的二次三项式,其理论依据是完全平方式,配方的方法是通过添项:加上一次项系数一半的平方构成完全平方式,对学生来说,要理解和掌握它,确是一个难点。教学过程:(一)创设情境,设疑引新在实际生活中,我们常常会遇到一些问题,需要用一元二次方程来解决。例如:【请你帮帮忙】小明用一段长为20米的竹篱笆围成一个矩形,怎样设计才可以使得该矩形的面积为9米2?(二)复习旧知练习:用直接开平方法解下列方程(1)9x2=4 (2)( x+3)2=0总结:上节课我们学习了用直接开平方法解形如(x+m)2=n(n0)的方程。(三)尝试指导,学习新知1、 提问:这样的方程你能解吗?x26x90 2、提问:这样的方程你能解吗?x26x40 思考:方程与方程有什么不同?能否把它化成方程的形式呢? 【归纳】配方法:通过配成完全平方式的方法,得到一元二次方程的解,这样的解法叫做配方法。配方法的依据:完全平方公式。 (四)合作讨论,自主探究下面我们研究对于一般的一元二次方程怎样配方。1、 配方训练练习第一题。补充:x2+mx( )x+( )22、将下列方程化为(x+m)2=n,(n0)的形式。(1)x24x30(2)x23x10然后进一步指导学生用配方法解以上两个方程。3、巩固提高:课本87页练习第二题。(五)总结、拓展【总结】1、用配方法解二次项系数为1的一元二次方程的基本思路:先将方程化为(x+m)2=n(n0)的形式,然后两边开平方就可以得到方程的解。2、 用配方法解二次项系数为1的一元二次方程的一般步骤:(1)移项(常数项移到方程右边)(2配方(方程两边都加上一次项系数的一半的平方)(3)开平方(4)解出方程的根思考:为什么配方的过程中,方程的两边都加上一次项系数的一半的平方?点拨:用图形直观地表示课本例题。3、 帮助小明解决问题。4、【变式题】解方程(x+1)(x+2)=15、【拓展】请判断:x24x3的值能否等于2?(从而指出该式的最小值为1。)(六)布置作业思考:1、利用配方法说明:无论x为何值,代数式x2x1的值均不会小于 ?2、当二次项系数不是1时,用配方法如何解2x25x20? 教学评析:配方法虽然不是解一元二次方程的主要方法,但是通过配方法可以推导出公式法的求根公式,并且是今后运用配方的思想解决一些数学问题的基础。所以,本节内容在教材中起到承前启后的作用,在整个初中的数学学习都起到至关重要的作用。根据教学内容的特点及学生的年龄、心理特征及已有的知识水平,本节课采用问题教学和对比教学法,用“创设情境建立数学模型巩固与运用反思、拓展”来展示教学活动。本节课要求学生多观察,勤思考,从而帮助学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年浙江省生态环境厅部分直属事业单位招聘7人(第二批)考前自测高频考点模拟试题附答案详解(模拟题)
- 2025北京十一未来城学校春季招聘模拟试卷及1套参考答案详解
- 广汽本田安全驾驶培训课件
- 安全培训教室设备要求课件
- 2025年超深井用高抗挤毁石油管钢项目建议书
- 2025年潍坊职业学院高层次高技能人才引进(招聘)(10人)考前自测高频考点模拟试题及完整答案详解一套
- 山西省【中职专业高考】2025年中职高考对口升学(理论考试)真题卷【轻工纺织大类】模拟练习
- 安全培训教学存在的不足
- 2025年公路旅客运输服务项目发展计划
- Human-TP53-mRNA-生命科学试剂-MCE
- 少先队活动课《民族团结一家亲-同心共筑中国梦》课件
- 阀门培训课件
- 《焦化机械设备维护检修标准》
- DB11∕T 899-2019 盆栽蝴蝶兰栽培技术规程
- ISO27001信息安全管理体系培训资料
- 2024年上半年全国燃气事故分析报告
- 医学基础知识名词解释题库
- 糖尿病性视网膜病变3
- 《进一步规范管理燃煤自备电厂工作方案》发改体改〔2021〕1624号
- 学生手册超级题库
- 现金收付业务管理办法
评论
0/150
提交评论