一次函数教学案例.doc_第1页
一次函数教学案例.doc_第2页
一次函数教学案例.doc_第3页
一次函数教学案例.doc_第4页
一次函数教学案例.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一次函数的图象教学实录师:上节课我们学习了一次函数的定义,下面找同学写出几个一次函数。学生 1:y=x+2。学生 2:y=2x-1。师:那么,谁还能写出一些其他的一次函数?学生 3:y=x。学生 4:y=-3x。师:这两个函数是特殊的一次函数。同学(齐答):正比例函数。师:现在我把同学们分成四组,每组的同学画一个一次函数图象,比一比哪个组画得最快 .师:画完的同学请举手。同学们基本都画完了,你们所画的图象是什么形状的?同学(齐答):是直线。师:有没有画的不是直线的,请举手。没有。从而你们能得出什么结论呢?学生 5:一次函数的图象是直线师:这就是我们本节课要讲的内容 -一次函数的图象.师:回想一下,你是用什么方法画出函数图象的呢?学生 6:描点法.师:你描了几个点?学生 7:七个点。师:减少点的个数行不行?六个、五个 .二个可不可以画出函数的图象?学生 8:不可以,因为点的个数太少,图象不够精确。学生 9:可以,因为两点确定一条直线.师:你们赞成谁的说法?同学(齐答):赞成学生 9的说法.师:由于一次函数的图象是一条直线,所以今后再画一次函数的图象,只要描出两个点就可以了 .如:y=2x-1的图象,你会描出哪两个点?学生 10:(0,-1);(1,1)。学生 11:(-2,-5);(-1,-3)。学生 12:(0,-1);(1/2,0)。学生 13:(-2,-5,);(1,1)。师:同学举的这些点都可以,只要是在自变量取值范围内函数图象上的点都可以 .师:下面请同学们在同一直角坐标系中画出各组函数的图象: (分组进行)( 1)y=x+1与y=x-2;(2)y=-x与y=-x+3;( 3)y=2x-1与y=x-1;(4)y=-x+1与y=x-2.师:把各组同学完成的图象展示给大家,你们观察各组两个图象的位置有什么关系?学生 14:前两组中两条直线互相平行.后两组中的两条直线相交.师:你能通过观察它们的函数关系式找出产生这种现象的原因吗 ?学生 15:k值相同时两直线平行.师: k值相同、b值不同,两条直线互相平行.由于两条直线平行,所以一条直线可由另一条直线平移得到.如:y=x-2,可由y=x+1经怎样平移得到?沿y轴向下平移3个单位得到.同样,y=x+1可由y=x-2如何得到?学生 16:沿y轴向上平移3个单位.师:再观察后两组的两个函数的图象有怎样的位置关系?学生 17:两条直线相交.师:观察函数关系中的 k、b值可以发现,每组中两个函数的k值不同.所以,k值不同时,两直线相交于一点.师:下面,我们一起来看一下常数 k、b的取值对直线位置的影响.( 1)k相同、b不同,两直线互相平行,函数图象与y轴交点的纵坐标不相同;( 2)k不同,b相同,两条直线倾斜程度不相同,两直线与y轴相交与同一点(0,b)师:填一填:对于两直线 y 1 =k 1 x+b 1 ,y 2 =k 2 +b 2 (k 1 、k 2 0),( 1)当k 1 _ k 2 ,b 1 _ b 2 ,两直线平行;( 2)当k 1 _ k 2 ,b 1 _ b 2 ,两直线相交于 _ ;( 3)将y=kx+b (k0) _ 得到y=kx+b-m. (k0,m0) 。师: 小结:1、两点法画一次函数的图象.2、常数k、b的取值对直线位置的影响( 1)k相同,b不同,两直线互相平行,函数图象与y轴交点的纵坐标不相同;( 2)k不同,b相同,两直线倾斜程度不相同,两直线与y轴交于同一点(0,b)。师:布置作业。一次函数的图象评析一次函数的图象是新人教版八年级数学 (上册)第14章第2节的内容,共两课时。此为第2课时。这个课例的特点是设计的思路好,注重师生的双边活动,充分发挥学生的主体作用。从以下几个方面谈点看法:1、给学生提供了充分活动的机会,以学定教,且保证了活动的质量。整堂课是通过由学生分组画不同的一次函数图象,然后从所画不同一次函数的图象都是一条直线中得出一次函数的图象是直线的结论,然后启发学生去思考能否有简便的方法将图象画出,得出本课的重点,可只描直线上的任何两点而得一次函数的图象。而后给学生练习的机会,让学生利用两点法画出几组一次函数的图象,并观察每组直线的位置关系从而得到本堂课第二个有用的结论,整个教学过程都给了学生非常充分的时间,使教师真正变成了一个组织者、引导者。2、能把握重点、调动各种能力帮助学生理解和掌握知识,主要表现在两个方面:( 1)得出“画一次函数图象只需描出图象上的任意两点”的结论后,提问学生“你取的是哪两点”,找了四个同学回答出各自的两个点,既让学生知道如何去找图象上的两个点,也使学生理解了刚刚得出的结论。( 2)在整堂课画图的过程中都采用了分组画的方法,这样做的好处不仅向学生提供了充分从事数学活动的机会、使学生获得广泛的数学活动体验,而且结论的得出也具有说服力且节省了大量的时间。3、激发了学生的积极性,表现在提问学生以及展示学生的答案到位,而且整个教学过程是在大多数学生都完成图象的情况下进行的,面向了全体学生。4、注意用科学的方法引导学生。例如,讲两个一次函数k相同、b不相同,问:与前一条直线相比,你有哪些感受。符合这个年龄的学生的认知特点5、教师的语言简练。如“我们都知道一次函数的图象是一条直线,那么能否把点的个数减少来画图象”。不足之处:1、时间上没有把握好,引入时画图时间过长(共用去10分钟),这跟学生的本身素质也有很大关系。有的教师提出可通过检查作业的形式引入,我认为这种方法除可节约时间外,画出的一次函数的图象会更多,更有说服力。2、由于时间紧,课堂后半部分显得较忙乱,分散了学生的注意力,使课堂效率受到了一定的影响。3、教师的仔细程度不够,在展示学生的图象时,有的没有坐标原点,教师没有及时强调

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论