资源目录
压缩包内文档预览:
编号:6099435
类型:共享资源
大小:159.10KB
格式:RAR
上传时间:2017-11-16
上传人:闰***
认证信息
个人认证
冯**(实名认证)
河南
IP属地:河南
13
积分
- 关 键 词:
-
过程
进程
控制系统
中文
- 资源描述:
-
过程控制系统【中文1688字】,过程,进程,控制系统,中文
- 内容简介:
-
1【中文 1688 字】过程控制系统过程控制系统通常是一个调节器。然而一个复杂的过程控制系统可能包含好几个被称为伺服机构的装置。我们将讨论的系统有几个输入,其中某些输入称为控制量,,因为这些量是可以人为地控制的,而另外一些输入称为外部扰动,它们是非常难以预测.在这些情况下、控制问题的一个方面在于确定如何处理控制量以便抵制外部干扰对系统状态的影响,解决这种问题的一个可能的办法是不断的测量扰动量,根据这个测量值和已知系统的方程确定的应有的控制输入量,以便对系统状态进行合适的控制。.现在考虑一个典型过程控制系统的例子。该系统包括:测量值-输出 o 、设定值-输入 i、偏差-负误差(-= o- i)、变送器-误差检测器、控制器、气压电机控制阀-输出元件、过程-负载。这些任务几乎总是用标准的和现成的控制器(调节器)来实现的,控制器可能是电子的或是气动的,它们有设定点的 yr手动或遥控的输入装置,通常包括一个能连续绘制图形 y 的纪录仪。最简单的形式中,这样一个控制器只有比例控制作用:控制器中的功率放大器产生一个正比于误差的信号,用它来驱动例如流量调节阀门的执行元件。更精密的控制器包括能给出比例加微分(PD),比例加积分(PI),或者比例加积分加微分(PID)控制作用的校正网络。PID 也叫做“三项”控制器,可用式描述: 0()()tpdieutktkd其中 u 是控制器的输出,e=y r-y 是误差信号,其理想传函为 ()icpdhss当然,实际上这是不能完全得到的,我们已解释过对信号进行微分的困难性。在电子控制器中,正比于误差信号的微分项通常由超前网络近似产生;在气动装置中,积分和微分都是由无源的滞后与超前网络产生。图 1 是一个典型的气动 PID 控制器的方框图。 2当然,实际上这是不能完全得到的,我们已解释过对信号进行微分的困难性。在电子控制器中,正比于误差信号的微分项通常由超前网络近似产生;在气动装置中,积分和微分都是由无源的滞后与超前网络产生。图 1 是一个典型的气动 PID 控制器的方框图。图 1 气动 PID 控制器方块图图 2 是对开环控制系统的一般性表示。输入变量或控制作用 u(t)是根据本系统的目标以及所有获得的先验知识而选定的。输入变量决不会受到 y(t)所表示的系统输出变量的影响。如果有不期望的扰动作用在开环系统上,或者如果其行为不能完全掌握的话,则该系统的输出就不会完全如预期般动作。图 2 开环控制系统另一类常见的控制系统是闭环或反馈控制系统,如图 3 所示。闭环控制系统中,控制作用 u(t)被以某种方式由与系统输出行为有关的信息所校正。一个反馈系统经常能更好地应付不期望的扰动作用以及系统动态性能的不确定性。然而,闭环控制不一定总是优于开环控制。当输出的测量误差足够大或不期望的扰动无关紧要时,闭环控制的性能就会比开环控制的差。在这些情况下,控制问题的一个方面在与确定如何处理控制量以便抵消外部对系统状态的影响。解决这个问题的一种可能的方法是不断地测量扰动量,根据该测量值和已知的系统方程式,定出应有的控制输入量(用时间函数表示),以便对系统状态进行合适的控制。另一种不同的方法是组成反馈系统,即不是直接测量扰动量,然后从模型或系 3统方程组去计算扰动对系统的影响。而是将系统状态的直接的连续的测量值与表示其“希望值”信号相比较,由此产生一个误差信号,再利用误差信号产生系统的输入,而该输入又使误差尽可能的接近于零。这两种基本控制系统结构如图 4 所示。图 3 闭环控制系统图 4 (a)开环控制策略 (b)闭环控制策略如果有一个系统对于参考输入或扰动输入的响应不能满足稳态无差性能的话,那么只有在系统的回路加入需要的积分器,而没有其他的方法可以选择。有好几种用模拟装置(不同于数字的)实现变量对时间积分的方法。最普通的积分装置可能是电子模拟计算机中的基本积分电路,它是由具有输入电阻和反馈电容的运算放大器组成的。随着集成电路的发展,这种装置已非常小型化,而且采用机械位移的系统 4便宜得多。由于电压便于传输、比较、放大和综合,在许多工业控制中,一般均采用电信号,因此电子积分器是很容易实现的。但是,所有的积分器都是需要电源的“有源”装置。有时性能指标允许有非零稳态误差,这就不需要附加积分器,但是如果不恶化到瞬态性不能接受的程度,回路增益就不可能得到足够大的数值。 1Process-Control SystemsA process-control system is often a regulatorHowever ,a complicated process-control system may possibly contain several de vides which could be defined as servo-mechanismswe shall consider systems with several inputs ,some know as controls because they may be manipulated and others called external disturbances ,which are quite unpredictable.In such situations, one aspect of the control problem is to determine how the controls should be manipulated so as to counteract the effects of the external disturbances on the state of the system. one possible approach to the solution of this problem is to use a continuous measurement of the disturbances , and from this and the known system equations to determine what the control inputs should be as functions of time to give appropriate control of the system state.An example of a typical process control system will now be consideredThis system include:measured value (output ),set value (input ),deviation (minus error oi), transmitter (error detector ),control pneumatic motor control valve (output oielement),process (load)This is quite different from industrial process control ,the other large area of applica-tion of automatic control systems,which includes such tasks as the control of flow rates inpipelines,temperatures in furnaces and chemical reactors,concentrations of reagents,andlevels in tanksThese are almost invariably carried out with standard off-the-shelf control-lers,either electronic or pneumatic,which have provision for manual or remote entry of the set point ,and often include a recorder which produces a continuous plot of Inry yits simplest form,such a controller provides only proportional control action :a power am-plifier in the controller produces a signal proportional to the error which can then be used to drive an actuator such as a flow regulating valveMore elaborate controllers include 2compensating networks which give proportional-plus-derivative (PD),proportional-plus-integral (PI),or proportional-plus-integral-plus-derivative (PID) control actionThe lat-ter is also known as a three-term controller ,and is descried by0()()tpdieutktkdwhere is the controller output and is the error signalthus the ideal transferuryfunction of controller is ()icpdkhssthis,of course,cannot be achieved perfectly in practice;we have already commented onthe difficulty of differentiating signalsIn electronic controllers,the component proporti-onal to the derivative of the errors usually produced approximately by a lead network;in pneumatic devices,both integral and derivative components are produce by passive (lag and lead) networks A block diagram of a typical pneumatic PID controller is shown in Fig1Fig.1 Block Diagram of a Pneumatic PID ControllerFig2 is a general representation of an open-loop control systemThe input or con-trol is selected based on the goals for the system and all available a priori knowledge ()utabout the systemThe input is in no way influenced by the output of the system,represen-nted by If unexpected disturbances act upon an open-loop system,or if its ()ytbehavior 3is not completely understood,then the output will not behave precisely as expectedFig2 An Open-Loop Control SystemAnother general class of control systems is the closed-loop or feedback control system,as illustrated in Fig3In the close-loop system,the control is modified()utin some way by information about the behavior of the system outputA feedback system isoften better able to cope with unexpected disturbances and uncertainties about the systemsdynamic behaviorHowever,it need not be true that close-loop control is always superiorto open-loop controlWhen the measured output has errors which are sufficiently large, and when unexpected disturbances are relatively unimportant,close-loop control have a performance which is inferior to open-loop controlFig3 An Closed-Loop Control SystemIn such situations ,one aspect of the control problem is to determine how the control should be manipulated so as to counteract the effects of the external disturbances on the state of the systemOne possible approach to the solution of this problem is to use a continuous measurement of the disturbances,and from this and the known system equations to determine what the control inputs should be as functions of time to give appropriate control of the system stateA different approach is to construct a feedback system,that is,rather than measure 4the disturbances directly and then compute their effects on the system from the model or system equations,we compare direct and continuous measurements of the accessible syst-em states with signals representing their desired values to form an error signal,and use this signal to produce inputs to the system which will drive the error as close to zero as possibleDiagrams representing these two basic strategies of control are shown in Fig4Consider a system which fails to meet a specification calling for zero steady-state error in response to a reference or disturbance inputThere is then no choice but to insert the required number of integrators into the loopFig4 Schematic Representation(a)open-loop;(b)closed-loop control strategiesThere are thus two methods for improving the static accuracy of a sys tem when loop gain adjustment by itself will not work:inserting pure integrators into the loop or inserting a passive lag networkOf these,the former is more effective,at the cost of amore severe degradation of the transient response, so that a further step of compensation is usually nec-cessary to improve transientsThere are several ways to implement time integration of a 5variable by analog (as distinct from digital) devicesProbably the most common integrati-ng device is the basic integrating circuit of the electronic analog computer,consisting of anoperational amplifier with an input resistor and a feedback capacitor With the development of integrated circuits,such devices have become very compact,and quite cheap compared with systems employing mechanical displacementsIn many industrial control systems signals are realized electrically because of the ease of transmitting, comparing,amplifying,and summing voltages,so that electronic integrators can be readily implementedNevertheless,all integrators are active devices requiring a power supply sometimes the performance specifications permit a nonzero steady-state error,so that additional integrators can be avoided,but the loop gain cannot be given a sufficiently high value without an unacceptable deterioration in transient performance过程控制系统过程控制系统通常是一个调节器。然而一个复杂的过程控制系统可能包含好几个被称为伺服机构的装置。我们将讨论的系统有几个输入,其中某些输入称为控制量,,因为这些量是可以人为地控制的,而另外一些输入称为外部扰动,它们是非常难以预测.在这些情况下、控制问题的一个方面在于确定如何处理控制量以便抵制外部干扰对系统状态的影响,解决这种问题的一个可能的办法是不断的测量扰动量,根据这个测量值和已知系统的方程确定的应有的控制输入量,以便对系统状态进行合适的控制。.现在考虑一个典型过程控制系统的例子。该系统包括:测量值-输出 o 、设定值-输入 i、偏差-负误差(-= o- i)、变送器-误差检测器、控制器、气压电机控制阀-输出元件、过程-负载。这些任务几乎总是用标准的和现成的控制器(调节器)来实现的,控制器可能是电子的或是气动的,它们有设定点的 yr手动或遥控的输入装置,通常包括一个能连续绘制图形 y 的纪录仪。最简单的形式中,这样一个控制器只有比例控制作用:控制器中的功率放大器产生一个正比于误差的信号,用它来驱动例如流量调节阀门的执行元件。更精密的控制器包括能给出比例加微分(PD),比例加积分(PI),或者 6比例加积分加微分(PID)控制作用的校正网络。PID 也叫做“三项”控制器,可用式描述: 0()()tpdieutktkd其中 u 是控制器的输出,e=y r-y 是误差信号,其理想传函为 ()icpdhss当然,实际上这是不能完全得到的,我们已解释过对信号进行微分的困难性。在电子控制器中,正比于误差信号的微分项通常由超前网络近似产生;在气动装置中,积分和微分都是由无源的滞后与超前网络产生。图 1 是一个典型的气动 PID 控制器的方框图。当然,实际上这是不能完全得到的,我们已解释过对信号进行微分的困难性。在电子控制器中,正比于误差信号的微分
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。