



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
“鸽巢问题”教学设计 2017-5-23 吴永萍 教学内容: 教材第68-70页例1、例2,及“做一做”,及第71页练习十三的1-2题。 教学目标: 1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。 2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。 3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。 教学重点:引导学生把具体问题转化成“鸽巢问题”。教学难点:找出“鸽巢问题”解决的窍门进行反复推理。教具准备:多媒体课件。教学过程:一、创设情境,导入新知在上课之前,我给大家表演一个“魔术”。一副牌,取出大小王,还剩52张牌,请5位同学上前随意抽一张,我知道至少有2张牌是同花色的。相信吗? 师:像这样的现象中隐藏着什么数学奥秘呢?这节课我们就一起来研究这个原理。-出示课题 二、合作交流,探究新知 1、教学例1(课件出示例题1情境图) 温馨提示:1、所有的笔都必须放进笔筒里,不考虑笔筒的顺序,只考虑笔筒内笔的支数。2、用杯子代替笔筒,分组操作,小组长把操作的结果记录下来。(生读例1和温馨提示。)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有几支铅笔。为什么呢?“总有”和“至少”是什么意思? (1)操作发现规律:通过把4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1个笔筒里至少有2支铅笔。 (2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。 (3)探究证明。 方法一:用“枚举法”证明。 发现:枚举法很直观,但有一定的局限性。方法二:用“假设法”证明。 (平均分的方法)通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。 (4)认识“鸽巢问题” 像上面这样的问题就是“鸽巢问题”,也叫“抽屉原理”。在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。 这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。 拓展: 把6枝铅笔放进5个文具盒里呢? 把7枝铅笔放进6个文具盒里呢? 把8枝铅笔放进7个文具盒里呢? 把100枝铅笔放进99个文具盒里呢? 小结:只要铅笔的支数比文具盒的数量多1,总有一个盒子里至少有2支铅笔。 如果放的铅笔数比笔筒的数量多2,那么总有1个笔筒至少放2支铅笔;如果放的铅笔比笔筒的数量多3,那么总有1个笔筒里至少放2只铅笔小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放2支铅笔。 (5)归纳总结: 鸽巢原理(一):如果把m个物体任意放进n个抽屉里(mn,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。 2、教学例2(课件出示例题2情境图) 思考问题:(一)把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。为什么呢?(二)如果有8本书会怎样呢?10本书呢? 学生通过“探究证明得出结论”的学习过程来解决问题(一)。 (1)探究证明。 方法一:用数的分解法证明。 把7分解成3个数的和。把7本书放进3个抽屉里,共有如下8种情况: 由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。 方法二:用假设法证明。 把7本书平均分成3份,73=2(本).1(本),若每个抽屉放2本,则还剩1本。如果把剩下的这1本书放进任意1个抽屉中,那么这个抽屉里就有3本书。 (2)得出结论。 通过以上两种方法都可以发现:7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。 学生通过“假设分析法归纳总结”的学习过程来解决问题(二)。(1)用假设法分析。 83=2(本).2(本),剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。 103=3(本).1(本),把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。 (2)归纳总结: 综合上面两种情况,要把a本书放进3个抽屉里,如果a3=b(本).1(本)或a3=b(本).2(本),那么一定有1个抽屉里至少放进(b+1)本书。 鸽巢原理(二):把多与kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。 三、巩固新知,拓展应用1、完成教材第70页的“做一做”。 学生独立思考解答问题,集体交流、纠正。2、完成教材第71页练习十三的1-2题。 学生独立思考解答问题,集体交流、纠正。 四、课堂总结 通过今天
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 管道工程社会责任与企业文化建设考核试卷
- 糖批发企业品牌推广策略考核试卷
- 刨花板生产过程中的质量控制与品质提升考核试卷
- 机电组件的绿色制造与循环经济考核试卷
- 航空器维修与故障排除考核试卷
- 跨境电商与国际市场的投资机遇与风险考核试卷
- 营养师职业素养与伦理考核试卷
- 盐的采集与利用中的产品质量控制考核试卷
- 货运火车站操作规程与实践考核试卷
- 装饰材料陈列展示技巧考核试卷
- 地域文化(专)-终结性考试-国开(SC)-参考资料
- 户用光伏逆变器Modbus通讯协议地址定义
- 2024年会计专业考试高级会计实务试题与参考答案
- 2022年一级注册建筑师建筑设计知识考试真题及答案
- 电子政务概论-形考任务5(在线测试权重20%)-国开-参考资料
- 古代小说戏曲专题-形考任务2-国开-参考资料
- 2020-2024年高考英语试题分类汇编:阅读理解01(人与自然)(解析版)
- 蛋白质是生命活动的主要承担者课件
- 大班连加练习题可打印
- xx加油站规划设计方案
- GA/T 2133.1-2024便携式微型计算机移动警务终端第1部分:技术要求
评论
0/150
提交评论