直线和平面垂直的性质定理教案.doc_第1页
直线和平面垂直的性质定理教案.doc_第2页
直线和平面垂直的性质定理教案.doc_第3页
直线和平面垂直的性质定理教案.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

直线和平面垂直的性质 教学目的:1、掌握直线与平面垂直的性质定理,并会应用直线与平面垂直的性质定理解决相关问题,掌握性质定理的推理论证。2、让学生在观察物体模型的基础上,进行操作确认,获得对性质定理正确性的认识;能解决“当a时,直线a与平面的距离问题”;3、通过“直观感知、操作确认,推理证明”,培养学生空间概念、空间想象能力以及逻辑推理能力教学重点:直线与平面垂直的性质定理教学难点:性质定理的证明和运用教学过程:(一)创设情景,揭示课题 问题:若一条直线与一个平面垂直,则可得到什么结论?若两条直线与同一个平面垂直呢?让学生自由发言,教师不急于下结论,而是继续引导学生:欲知结论怎样,让我们一起来观察、研探。(自然进入课题内容)(二)研探新知1、操作确认观察长方体模型中四条侧棱与同一个底面的位置关系。如图2.34,在长方体ABCDA1B1C1D1中,棱AA1、BB1、CC1、DD1所在直线都垂直于平面ABCD,它们之间是有什么位置关系?(显然互相平行)然后进一步迁移活动:已知直线a 、b、那么直线a、b一定平行吗?(一定)我们能否证明这一事实的正确性呢?C1D1ab A1B1DCAB图2.3-4 图2.3-52、推理证明引导学生分析性质定理成立的条件,介绍证明性质定理成立的特殊方法反证法, 总结新知识:1、直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那麽这两条直线平行 已知:如图, 求证:证明:(反证法)假定不平行于,则与相交或异面;(1)若与相交,设, 过点有两条直线与平面垂直,此与“过一点有且只有一条直线垂直于已知平面”矛盾,与不相交;(2)若与异面,设,过作, 又且,过点有直线和垂直于与过一点有且只有一条直线一已知平面垂直矛盾,与不异面,综上假设不成立, 2点到平面的距离的定义:从平面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离3直线和平面的距离的定义:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离(三)例题讲解:例1 已知一条直线和一个平面平行,求证直线上各点到平面的距离相等证明:过直线上任意两点A、B分别引平面的垂线,垂足分别为 设经过直线的平面为,/ 四边形为平行四边形由A、B是直线上任意的两点,可知直线上各点到这个平面距离相等(四)、课堂练习:1对于已知直线a,如果直线b同时满足下列三个条件:与a是异面直线;与a所成的角为定值;与a距离为定值d那么这样的直线b有( )2求证:两条异面直线不能同时和一个平面垂直分析:用反证法,假设这两条异面直线同时和一个平面垂直,由直线和平面垂直的性质定理,那麽这两条直线平行,此与条件矛盾因此两条异面直线不能同时和一个平面垂直3地面上有两根相距c米的直立旗杆,它们的长分别是a米,b米(ba),求它们上端间的距离分析:如图所示,ABC为直角三角形4如图,已知E,F分别是正方形ABCD边AD,AB的中点,EF交AC于M,GC垂直于ABCD所在平面(1)求证:EF平面GMC(2)若AB4,GC2,求点B到平面EFG的距离分析:第1小题,证明直线与平面垂直,常用的方法是判定定理;第2小题,如果用定义来求点到平面的距离,因为体现距离的垂线段无法直观地画出,因此,常常将这样的问题转化为直线到平面的距离问题解:(1)连结BD交AC于O,E,F是正方形ABCD边AD,AB的中点,ACBD,EFACACGCC,EF平面GMC(2)可证BD平面EFG,由例题2,正方形中心O到平面EFG(五)、小结 :我们学习了直线和平面垂直的性质定理,以及两个距离的定义定理的证明用到反证法,证明几何问题常规的方法有两种:直接证法和间接证法,直接证法常依据定义、定理、公理,并适当引用平面几何的知识;用直接法证明比较困难时,我们可以考虑间接证法,反证法就是一种间接证法直线与平面垂直的性质定理,应用直线与平面垂直的性质定理解决相关问题 (六)、课后作业:1已知矩形ABCD的边长AB6cm,BC4cm,在CD上截取CE4cm,以BE为棱将矩形折起,使BCE的高CF平面ABED,求:(1)点C到平面ABED的距离;(2)C到边AB的距离;(3)C到AD的距离参考答案:(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论