数学北师大版九年级上册4.用因式分解法求解一元二次方程.docx_第1页
数学北师大版九年级上册4.用因式分解法求解一元二次方程.docx_第2页
数学北师大版九年级上册4.用因式分解法求解一元二次方程.docx_第3页
数学北师大版九年级上册4.用因式分解法求解一元二次方程.docx_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

年 级九年级(上)科 目代数课 题用因式分解法求解一元二次方程课 时7教 学目 标1、能根据具体一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性。2、会用因式分解法(提公因式法、公式法)解决某些简单的数字系数的一元二次方程。3、通过因式分解法的学习,培养学生分析问题、解决问题的能力,并体会转化的思想。重 点难 点1、会用因式分解法(提公因式法、公式法)解决某些简单的数字系数的一元二次方程。2、通过小组合作交流,尝试在解方程过程中,多角度地思考问题,寻求从不同角度解决问题的方法。过 程内 容 及 方 法研讨复备第一环节:复习回顾内容:1、用配方法解一元二次方程的关键是将方程转化为(x+m)2=n(n0)的形式。 2、用公式法解一元二次方程应先将方程化为一般形式。3、选择合适的方法解下列方程:x2-6x=7 3x2+8x-3=0教学方法:第一问题学生先动笔写在练习本上,有个别同学少了条件“n0”。第二问题由于较简单,学生很快回答出来。第三问题由学生独立完成,通过练习学生复习了配方法及公式法,并能灵活应用,提高了学生自信心。第二环节:情景引入、探究新知1、 师:有一道题难住了我,想请同学们帮助一下,行不行?出示问题:一个数的平方与这个数的3倍有可能相等吗?如果能,这个数是几?你是怎样求出来的?说明:学生独自完成,教师巡视指导,选择不同答案准备展示。2、师:同学们在下面用了多种方法解决此问题,观察以上四个同学的做法是否存在问题?你认为那种方法更合适?为什么?说明:小组内交流,中心发言人回答,及时让学生补充不同的思路,关注每一个学生的参与情况。3、师:及时评价鼓励,激发学生的学习热情。现在请C同学为大家说说他的想法好不好? 学生C:X(X-3)=0 所以X1=0或X2=3 因为我想30=0, 0(-3)=0 , 00=0反过来,如果ab=0,那么a=0或b=0,所以a与b至少有一个等于04、师:好,这时我们可这样表示: 如果ab=0,那么a=0或b=0 这就是说:当一个一元二次方程降为两个一元一次方程时,这两个一元一次方程中用的是“或”,而不用“且”。所以由x(x-3)=0得到x=0和x-3=0时,中间应写上“或”我们再来看c同学解方程x2=3x的方法,他是把方程的一边变为0,而另一边可以分解成两个因式的乘积,然后利用ab=0,则a=0或b=0,把一元二次方程变成一元一次方程,从而求出方程的解。我们把这种解一元二次方程的方法称为因式分解法,即当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,我门就采用因式分解法来解一元二次方程。教学方法:对于问题1学生能根据自己的理解选择一定的方法解决,速度比较快。第2问让学生合作解决,学生在交流中产生了不同的看法,经过讨论探究进一步了解了分解因式法解一元二次方程是一种更特殊、简单的方法。C同学对于第3问的回答从特殊到一般讲解透彻,学生语言学生更容易理解。问题4的解决很自然地探究了新知因式分解法.并且也点明了运用因式分解法解一元二次方程的关键:将方程左边化为因式乘积,右边化为0,这为后面的解题做了铺垫。说明:如果ab=0,那么a=0或b=0,“或”是“二者中至少有一个成立”的意思,包括两种情况,二者同时成立;二者有一个成立。“且”是“二者同时成立”的意思。第三环节 例题解析内容:解下列方程 (1)、 5X2=4X (仿照引例学生自行解决) (2)、 X-2=X(X-2) (师生共同解决) (3)、 (X+1)2-25=0 (师生共同解决) 先让学生讨论,之后教师加以总结。解方程(1)时,先把它化为一般形式,然后再因式分解求解。解方程(2)时因为方程的左、右两边都有(x-2),所以我把(x-2)看作整体,然后移项,再因式分解求解。方程(x+1) 2- 25=0的右边是0,左边(x+1) 2-25可以把(x+1)看做整体,这样左边就是一个平方差,利用平方差公式即可因式分解。由此可知:一个一元二次方程的解法可能有多种,我们在选用时,以简便为主。问题:1、用这种方法解一元二次方程的思路是什么?步骤是什么? (小组合作交流)2、对于以上三道题你是否还有其他方法来解? (课下交流完成)第四环节:巩固练习内容:1、解下列方程:(1) (X+2)(X-4)=0 (2 ) X2-4=0 (3 ) 4X(2X+1)=3(2X+1)2、一个数平方的两倍等于这个数的7倍,求这个数?第六环节 感悟与收获内容:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论