




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课 题(课型) 函数概念与基本初等函数教学方法:知识梳理、例题讲解、归纳总结、巩固训练(一)函数1了解构成函数的要素,了解映射的概念,会求一些简单函数的定义域和值域2理解函数的三种表示法:解析法、图象法和列表法,能根据不同的要求选择恰当的方法表示简单的函数。3了解分段函数,能用分段函数来解决一些简单的数学问题。4理解函数的单调性,会讨论和证明一些简单的函数的单调性;理解函数奇偶性的含义,会判断简单的函数奇偶性。5理解函数的最大(小)值及其几何意义,并能求出一些简单的函数的最大(小)值6会运用函数图像理解和研究函数的性质(二)指数函数1了解指数函数模型的实际背景。2理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。3理解指数函数的概念,会求与指数函数性质有关的问题。4知道指数函数是一类重要的函数模型。(三)对数函数1理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。2理解对数函数的概念;会求与对数函数性质有关的问题3知道对数函数是一类重要的函数模型4了解指数函数 与对数函数 互为反函数( )。(四)幂函数1了解幂函数的概念。2结合函数 的图像,了解它们的变化情况。(五)函数与方程1了解函数零点的概念,结合二次函数的图像,了解函数的零点与方程根的联系。2理解并掌握连续函数在某个区间上存在零点的判定方法。能利用函数的图象和性质判别函数零点的个数函数的定义域和值一、定义域:1函数的定义域就是使函数式 的集合.2常见的三种题型确定定义域: 已知函数的解析式,就是 . 复合函数f g(x)的有关定义域,就要保证内函数g(x)的 域是外函数f (x)的 域.实际应用问题的定义域,就是要使得 有意义的自变量的取值集合.二、值域:1函数yf (x)中,与自变量x的值 的集合.2常见函数的值域求法,就是优先考虑 ,取决于 ,常用的方法有:观察法;配方法;反函数法;不等式法;单调性法;数形法;判别式法;有界性法;换元法(又分为 法和 法)例如: 形如y,可采用 法; y,可采用 法或 法; yaf (x)2bf (x)c,可采用 法; yx,可采用 法; yx,可采用 法; y可采用 法等.函数的单调性基础过关一、单调性1定义:如果函数yf (x)对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1、0).(2) 性质: ; 当为奇数时,; 当为偶数时,_ 2指数:(1) 规定: a0 (a0); a-p ; .(2) 运算性质: (a0, r、Q) (a0, r、Q) (a0, r、Q)注:上述性质对r、R均适用.3指数函数: 定义:函数 称为指数函数,1) 函数的定义域为 ;2) 函数的值域为 ;3) 当_时函数为减函数,当_时为增函数. 函数图像:1) 过点 ,图象在 ;2) 指数函数以 为渐近线(当时,图象向 无限接近轴,当时,图象向 无限接近x轴);3)函数的图象关于 对称. 函数值的变化特征: 对数函数基础过关1对数:(1) 定义:如果,那么称 为 ,记作 ,其中称为对数的底,N称为真数. 以10为底的对数称为常用对数,记作_ 以无理数为底的对数称为自然对数,记作_(2) 基本性质: 真数N为 (负数和零无对数); ; ; 对数恒等式: (3) 运算性质: loga(MN)_; loga_; logaMn (nR). 换底公式:logaN (a0,a1,m0,m1,N0) .2对数函数: 定义:函数 称为对数函数,1) 函数的定义域为( ;2) 函数的值域为 ;3) 当_时,函数为减函数,当_时为增函数;4) 函数与函数 互为反函数. 1) 图象经过点( ),图象在 ;2) 对数函数以 为渐近线(当时,图象向上无限接近y轴;当时,图象向下无限接近y轴);4) 函数ylogax与 的图象关于x轴对称 函数值的变化特征: 典型例题:例1.求下列函数的值域:(1)y=; (2)y=|x|.例2:已知函数f(x)=x2-4ax+2a+6 (xR).(1)求函数的值域为0,+)时的a的值;(2)若函数的值均为非负值,求函数f(a)=2-a|a+3|的值域.例3. 求下列函数的最值与值域:(1)y=4-; (2)y=x+;(3)y=.例4.已知f(x)是以2为周期的偶函数,且当x(0,1)时,f(x)=2x-1,则f(log212)的值为例5.已知函数y=的最大值为M,最小值为m,则的值为 例6.f(x)是定义在R上的以3为周期的偶函数,且f(2)=0,则方程f(x)=0在区间(0,6)内解的个数的最小值是 例7.定义在R上的函数f(x)满足f(x)= ,则f(2009)的值为例8.定义在R上的函数f(x)满足f(x)= ,则f(3)的值为例9.已知函数是上的偶函数,若对于,都有,且当时,则的值例10.设函数则不等式的解集是例11.已知偶函数在区间单调增加,则满足的x 取值范围是例12.已知函数(为实数,),若,且函数的值域为,求的表达式;设,且函数为偶函数,求证:例13.已知函数,(其中、为参数) (1)当时,证明:不是奇函数;(2)如果是奇函数,求实数、的值; (3)已知,在(2)的条件下,求不等式的解集例14.已知函数,(1)若,求证:函数是上的奇函数;(2)若函数在区间上没有零点,求实数的取值范围巩固练习:1.如果函数在区间1,1上的最大值是14,则实数的值为 ; 2已知函数是定义域为偶函数,当时,若函数在上的值域是,则实数的值的集合为 ;3.已知是有序数对集合上的一个映射,正整数数对在映射下对应的为实数,记作. 对于任意的正整数,映射由下表给出:则使不等式的解集为 .4已知函数存在唯一零点,则大于的最小整数为 .5函数的值域为 .6已知函数在区间上是减函数,则的取值范围是 .7. 数(K为给定常数),已知函数,若对于任意的,恒有,则实数K的取值范围为 8.已知偶函数f(x)在0,)上是增函数,则不等式的解集是 9.已知定义在上的偶函数满足对任意都有,且当时,若在区间内函数有3个不同的零点,则实数的取值范围为 10.如果函数的零点所在的区间是,则正整数 11.若关于的不等式的解集中的正整数解有且只有3个,则实数的取值范围是 12.已知函数的图象与函数的图象恰有两个交点,则实数的取值范围是 13已知函数是定义在上的单调增函数,且对于一切实数x,不等式恒成立,则实数b的取值范围是 14.已知,其中. (1)求的值;(2)求的值. 15.设不等式的解集是(3,2)(1)求;(2)当函数f(x)的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 桡骨头骨折课件
- 2025年公务员考试练习题考试练习题及答案指导
- 2025年融媒体舆情分析笔试高频考点解析集
- 桌球培训课程内容
- 2025年篮球规则试题及答案
- 2025年篮球明星试题及答案
- 2025年注册验船师资格考试(A级船舶检验专业案例分析)综合试题及答案二
- 桃红葡萄酒发酵工艺
- 2025年视觉设计岗位面试常见题
- 栽蒜苗课件教学课件
- 医学防汛知识课件
- 部编版小学四年级语文上册教学计划及教学进度表
- 2025年乡村医生考试题库(基础医学知识)历年真题与解析试题卷
- 高速公路笔试试题及答案
- 2025年税法知识培训
- 剪映剪辑教学课件
- 麦当劳营销策略分析及对策建议定稿
- 婚内债务协议
- 70岁老年人三力测试能力考试题库附答案
- 新任教师学生管理方法培训
- 2025年智慧校园校企合作专业共建服务合同3篇
评论
0/150
提交评论