全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第六章 平行四边形4多边形的内角和与外角和(一)1、 知识点: 1、n 边形的内角和是(n-2) 180. 2、正n边形的每个内角=.二、教学目标: 知识与技能:掌握多边形内角和定理,进一步了解转化的数学思想.过程与方法:经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法 情感与态度:让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造三、教学重点与难点:重点:多边形内角和定理的探索和应用. 难点:多边形内角和公式的推导;转化的数学思维方法的渗透四、导入新课:(放幻灯片1)创设现实情境,提出问题,引入新课:(放幻灯片2)1三角形是如何定义的?2仿照三角形定义,你能学着给四边形、五边形边形下定义吗?3结合图形认识多边形的顶点、边、内角及对角线。目的:对概念分析和归纳,培养学生的口头表达能力和语言组织能力。同时渗透类比思想。5、 探究新知:(放幻灯片3)1三角形的内角和是多少度?你是怎么得出的?用量角器度量:分别测量出三角形三个内角的度数,再求和。拼角:将三角形两个内角裁剪下来与第三个角拼在一起,可组成一个平角。目的:学生分组,利用度量和拼角的方法验证三角形的内角和,为四边形内角和的探索奠定基础。2四边形的内角和是多少?你又是怎样得出的?1度量 ; 2拼角; 3将四边形转化成三角形求内角和。目的:学生先通过度量、拼角两种方法,猜想得出四边形的内角和是360,然后引导学生利用分割的方法,将四边形分割成两个三角形来得到四边形的内角和,进一步渗透类比,转化的数学思想。3(放幻灯片4)在四边形内角和的探索过程中,用到了几种方法,你认为哪种方法好?请讲述你的理由。度量法:不精确;拼角法:操作不方便;当多边形边数较大时,度量法、拼角法都不可取。第三种方法:精确、省事且有理论根据。目的:通过几种方法的展示,比较几种方法的优劣,为五边形内角和的探索提供最简捷的方法。4根据四边形的内角和的求法,你能否求出五边形的内角和呢?学生动手实践,小组讨论、交流,寻找解答方法,并共同进行归纳总结。估计学生可能有以下几种方法:(放幻灯片5)(放幻灯片6)方法1:如图1,连结AD、AC,五边形的内角和为:3180=540。方法2:如图2,连结AC,则五边形内角和为:360+180=540。方法3:如图3,在AB上任取一点F,连结FC、FD、FE,则五边形的内角和为:4180-180=540。方法4:如图4,在五边形内任取一点O,连结OA、OB、OC、OD、OE,则五边形内角和为:5180-360=540。(放幻灯片7)方法5:如图5,在AB上任取一点F,连结FD,则五边形的内角和为:2360-180=540。方法6:如图6,在五边开外任取一点O,连接OA、OB、OC、OD、OE,则五边形内角和为:4180-180=540。小结:纵观以上各种证明思路,其共同点是通过图形分割,把五边形问题转化为熟悉的三角形、四边形问题来解决。目的:由于四边形的内角和易求得,这里采用略讲,而着重研究求五边形的内角和。在课堂上应该留给学生充足的时间讨论、交流,寻求多种不同的分割方法来得出五边形的内角和。这既符合新课程教学理念,又符合学生的认知规律和年龄特征,同时渗透转化思想。5小组合作,完成下面的表格。(课件出示讨论结果)6从表格中你发现了什么规律?(放幻灯片9)从多边形的一个顶点可以引出(n-3) 条对角线,把n 边形分成(n-2) 个三角形。得出:n 边形的内角和是(n-2) 180 。目的:在数学学习中,培养学生善于总结规律,构建知识体系是培养数学能力的一项重要内容,这样不仅使学生把本节课所学的知识形成一个完整的知识体系,而且进一步理解了多边形的内角和公式中的(n-2)的来历,更有利于培养学生善于归纳、总结的数学习惯和能力。6、 例题讲解:(放幻灯片10)如图6-24,四边形ABCD中,A+C=180,B与D有怎样的关系?解:,例1说明:如果四边形一组对角互补,那么另一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 重症医学科心源性休克护理要点
- 西藏拉萨市10校2025-2026学年化学高二上期末学业质量监测模拟试题含解析
- 云南省保山市施甸县一中2025-2026学年高二物理第一学期期末质量检测试题含解析
- 神经科小儿脑膜炎治疗方案
- 六盘水职业技术学院《有机化学(Ⅰ)(2)》2024-2025学年第一学期期末试卷
- 重症医学科ICU创伤性颅脑损伤监护护理规范
- 神经科帕金森病治疗方案
- 癫痫患者药物治疗领域及副作用培训
- 肠道感染预防控制流程
- 急性胰腺炎支持性治疗措施
- 生产安全生产事故案例
- 大量心包积液护理查房
- 2025护理教学计划
- 2025至2030中国废铅行业发展趋势分析与未来投资战略咨询研究报告
- 健康传播的共情唤醒模型-洞察阐释
- 网点负责人考试题库考点
- (高清版)DB62∕T 25-3069-2013 城市园林绿地养护管理标准
- 2025年呼和浩特天骄航空有限公司招聘笔试冲刺题(带答案解析)
- 结直肠癌导致急性肠梗阻外科治疗中国专家共识(2025版)课件
- 辅助改方时方向继电器电路识读穆中华60课件
- 东方航空民航招飞面试常见问题及答案
评论
0/150
提交评论