![[机械模具数控自动化专业毕业设计外文文献及翻译]【期刊】ResQuake:远程操作救援机器人-中文翻译_第1页](http://file.renrendoc.com/FileRoot1/2017-12/1/6cb2703f-e736-4af6-95ff-20cdc9dbdee4/6cb2703f-e736-4af6-95ff-20cdc9dbdee41.gif)
![[机械模具数控自动化专业毕业设计外文文献及翻译]【期刊】ResQuake:远程操作救援机器人-中文翻译_第2页](http://file.renrendoc.com/FileRoot1/2017-12/1/6cb2703f-e736-4af6-95ff-20cdc9dbdee4/6cb2703f-e736-4af6-95ff-20cdc9dbdee42.gif)
![[机械模具数控自动化专业毕业设计外文文献及翻译]【期刊】ResQuake:远程操作救援机器人-中文翻译_第3页](http://file.renrendoc.com/FileRoot1/2017-12/1/6cb2703f-e736-4af6-95ff-20cdc9dbdee4/6cb2703f-e736-4af6-95ff-20cdc9dbdee43.gif)
![[机械模具数控自动化专业毕业设计外文文献及翻译]【期刊】ResQuake:远程操作救援机器人-中文翻译_第4页](http://file.renrendoc.com/FileRoot1/2017-12/1/6cb2703f-e736-4af6-95ff-20cdc9dbdee4/6cb2703f-e736-4af6-95ff-20cdc9dbdee44.gif)
![[机械模具数控自动化专业毕业设计外文文献及翻译]【期刊】ResQuake:远程操作救援机器人-中文翻译_第5页](http://file.renrendoc.com/FileRoot1/2017-12/1/6cb2703f-e736-4af6-95ff-20cdc9dbdee4/6cb2703f-e736-4af6-95ff-20cdc9dbdee45.gif)
免费预览已结束,剩余13页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
南京理工大学泰州科技学院 毕业设计 (论 文 )外文 资 料翻 译 学院 (系 ): 机械工程学院 专 业: 机械工程及自 动 化 姓 名: 汪俊 学 号: 0601610108 外文出处: Journal of Mechanical Design 附 件: 1.外文 资 料翻 译译 文; 2.外文原文。 指导教师评语: 译文准确,语句通畅,符合汉语的习惯。 签名: 年 月 日 注: 请将该封面与附件装订成册。 附件 1:外文 资 料翻 译译 文 ResQuake:远程操作救援机器人 ResQuake 作为一种远程操作救援机器人,它的设计程序以及对其动态分析,生产过程,控制系统,防滑性能改进等一直被人们所探讨。人们首先要探讨的问题是规定机器人要完成的总任务以及组成机器人基本结构的各种机构。选择适当的机构、几何尺寸、对质量进行定性分析以形成系统的运动学和动力学模型。其次是对每个构建的强度进行分析以最终定型并提出机构模型。接着对控制系统进行简要的介绍,该控制系统包括用作主处理器的操作者的电脑以及安装在机器人身上作为从处理器的便携式电脑。最后通过实验测试确定并验证轨道滑移系数,以改善系统的跟踪性能。 ResQuake 已经参加几个救援机器人联赛。 关键词:移动机器人,远程操作,运动机制,控制结构,滑移估计 1 引言 由一个或多个操纵器平台组成的移动操纵型机器人有无限的工作空间。因此,各种行走,轮式,履带式和飞行系统已被提出并成功地付诸实践。这种系统被广泛用于消防,林业,排爆,有毒废物清理,运输材料,空间轨道维护等会危机到人类健康安全的领域 1。因此,可以预计,不管是自动运行的还是远程操作的移动机器,都将会在人类生活的各个不同领域发挥更加重要的作用。但是,在移动机器人系统中,基于作用于反作用原理,动力会影响到基座与操纵器的运动。因此,运动学、动态,以及对这些系统的控制已经得到了广泛的研究关注 2-5。 地震是一种会威胁人类生命的自然事件。主震之后的余震会造成二次坍塌, 这会危及搜救人员的生命。为了尽量降低救援人员的风险,同时增加受害人生存机率,开发出一种能相互协作的机器救援队不失为一种好的选择。该种机器人及其操作者的任务是找到受害者并确定他们的情况,然后汇报目标在建筑物地图上的方位 6,7。这消息,会立即被发送至人类救援队。对救援机器人的进一步预期,如能够自主搜索倒塌建筑物,发现受害者和确定他们的环境,为幸存者提供生活用品和通信工具和布设传感器 (声,热,地震等 )正处于课题研究中。然而,救援机器人的基本能力是它们在遭受破坏地区的机动性 ,这完全依赖于它们的运动系统和它们的维度。到目前为止已经设计并生产了各救援机器人 8,9。 本文对 Khaje Nasir Toosi 大学( KNTU)的 ResQuake 项目进行了直观的描述,如图 1 所示。首先对移动机构的设计步骤进行详细介绍,并确定系统尺寸和相关参数。然后是对系统运动学和动力学进行探讨,并提出对每个机构部件应力分析问题。接着是叙述机器人控制系统。最后通过实验测试确定并验证轨道滑移系数,以改善系统的跟踪性能。 ResQuake 有着友好的人机操作界面,它在非结构化环境、不光滑的路径,甚至是在爬楼梯时都有很强的移动能力。它的性能已被如下事实证明:在 2005 年日本大阪机器人世界杯救援机器人联赛中取得第二个最佳设计奖, 2006 年在德国不来梅机器人世界杯足球赛中取得最佳操作界面奖,以及 2008 年在中国苏州机器人杯大赛中取得第二个最佳移动奖。 图 1 ResQuake 在不同的环境中运动: (左 )折叠路径 ,(右 )爬上不平斜坡可扩展轨迹 2 机构设计 以移动形式划分,搜救机器人主要有三类,即轮式,履带式和行走机器人。轮式机器人,可以在搜索平坦的区域时使用。由于动力简单,开发这些自动系统相对容易。轮式机器人还能够攀爬高度比车轮小的障碍物。履带式机器人由于具有在崎岖不平的地形上移动的超强能力而得到广泛使用。图 2 展示了轮式和履带式系统面临着同样的障碍(楼梯) 。可以看出,相对较小的履带式机器人具有相同的越障能力。 图 2 两种运动系统遇到相同障碍物 行走机器人通常具有高自由度 (DOFs),故而具有高机动性。因此,这种系统的动力学模型及其稳定性要比前者复杂的多。此外,这种系统的运行需要大量的执行机构和传感器,所以他们的控制系统更昂贵。还应该提到的是两轮和行走机构相结合的方式,这保留了两个运动系统的优点,而且避免了它们的缺点 10。在轮式 -行走混合机构中,轮式机构可以支撑行走机构的重量,而行走机构可以在崎岖的地形上移动机器人。 不仅仅是运动系统类型,救援机器人的尺寸也是一个重要的问题。在一个遭受破坏的室内环境中,可能存在一些例如倒塌的墙壁或天花板一类的一般系统不能轻易通过的障碍。在这种情况下,机器人必须在障碍物之间寻找一条其他的路径而不是爬过他们,这无疑取决于它的大小。一个相对较小的机器人能够轻易地通过一条狭窄通道并继续搜索。应当指出,楼梯是室内环境的一个不可分割的一部分。不管楼梯破坏与否,救援机器人都应该有能力上下楼梯以搜查整个地区。 为了在这两个矛盾之间进行折衷,人们提出了一种具有高机动性的小机器人,履带式机构已经被应用于 ResQuake 的研制。这种机制包括一个主体 (基座 )和两个可扩展履带 (臂 )。这一布置使机器人能根据它遇到的障碍调整自身大小。因此,相应的,履带应该有一个最小长度以防止失去平衡,并且能够在没有额外震动的情况下能在连续的楼梯上稳定的运动,如图 3(a)所示 ,。另一方面 ,长的履带 ,例如那些简单的履带机器人需要一个较大的区域进行拐弯 ,如图 3(b),这在遭受破坏的环境中很难满足这一条件。 图 3 (a)履带式机器人最小长度 (b)简单的履带式机器人最小拐弯半径 2.1 可扩展履带 (臂 ) 图 4 中显示的结构 ,使得机器人可以扩大它的履带长度以便通过障碍。另一方面 ,当机器人在穿过狭窄的通道以及需要较小体积时,其前端可以折叠。这也有助于减少转弯半径。最初的想法是在折叠工作臂上,以克服上述矛盾。 这个概念已经改进了在两边都有一对工作臂的车辆,如图 4(b) 所示,用折叠臂来减少机器人的长度或扩大其他长度来满足其他要求。另一个优点是对称结构,该结构使得机器人在前进和后退时运动相似,这一布置便于在受限空间内转弯。 其次,工作臂被布置在同一平面内以降低机器人宽度 (图 5 (b)。最后,为了在工作臂折叠时使用额外的区域空间,在每个臂中安装了连接件 (图 5 (b)。因此 ,机器人两边的履带都能伸展成三个平行层面 ,这提供了更有效的牵引力。 图 4 (a)前端履带初步设计 (b)具有两对臂的改进设计 (前端和后端 ) 图 5( a)使履带共线以减少机器人宽度 (b)履带最终结构 在系统中添加四个独立的(主动)关节会增加执行机构的数量从而增加系统的总价格。因此,人们用行星齿轮系来简化每个臂上主连接件到次连接件的功率传输。每个臂上的两个的旋转是相互独立的。通过分析两个臂的轮廓可以得出齿轮传动比;( i)完全伸展( ii)完全折叠,这样,在那些具有两个轮廓的预期平面上的臂就可以运动 (图 6)。 图 6 臂的运动轨迹 如图 6 所示,当工作臂的主体部分旋转 / 2rad 时,从属部分的旋转角度应该超过 rad。具备这一性能的齿轮系应该是一个行星变速箱。第一个工作臂的主体部分在行星轮系中起着工作臂的作用,其动力由电动机直接提供。太阳轮连接在机器人上的主体之上,行星轮连接到在工作臂的从属结构上。一对中间齿轮安装在太阳轮和行星轮之间,该处齿轮的直径不得超过履带主轮直径这一阈值(图7) 。这一机构的另一个优点是工作臂的两个连接点处的中心距离在旋转时将保持不变。这使得我们能够补偿主履带和装有另一履带的工作臂之间的间隙。这种履带的作用是将履带主体部分上的动力传递至工作臂上的从属履带上。 图 7 个行星传动链 斜齿轮由于刚度大且齿轮轮齿强度相比于直齿圆柱齿轮来说更强而被用在行星齿轮系中 11,12。臂的角速度应低于 2 至 4 转每分钟,而电机的输出速度为 3000转每分钟。因此电机与连杆之间的速比约为 1000。三级行星齿轮变速箱这以组合结构的每一级的比率皆为 3: 1 (推定直角在角速度相对较大电机轴处)的比例。传动比为 30:1 的蜗轮系为受限空间提供了理想的传动比(图 8) 。机器人的两侧履带都是直流电机驱动。 图 8 最终设计的布置 2.2 履带 移动系统的牵引力在很大程度上依赖于机器人行走时履带表面与接触面之间的摩擦。因此履带部件的材料和形状就显得尤为重要 13。另一方面履带应该承受适当的张紧力。设计的履带由两个主要部件组成。链齿结构为系统提供了足够的张紧力 ,由乳胶做成的齿形零部件则补偿了链与接触面之间的隙,从而得到所需的摩擦力。通过用长销钉替换标准链中的销钉对金属链进行了修正。图 9 展示了修正后的链以及履齿是如何安装在这些销钉上的。 当系统需要快速机动的穿过或是爬过某个斜坡时,产生了一个严重的问题,那就是由于基座运动而导致的不稳定性及倾覆 14。悬架结构具备两个主要优点。 悬架系统包括主体上的两个表面,并将它们通过回转副连接起来(图 9) 。一对线性弹簧限制了旋转角度,同时使得该系统在未受到额外施加的作用力时保持理想姿势。在此指出一点,该系统不需要使用减震器,因为作为转动副的滑动轴承产生的摩擦力足以限制弹簧的额外震动。 图 9 上图:安装在链上的乳胶零件;下图:悬挂系统基本结构 2.3 最终尺寸 移动结构设计完成后开始进行尺寸设计。一些诸如金属链和行星轮一类的零件作为标准间很容易得到,所以其他零件的尺寸应该与它们相匹配。除此之外,在计算时必须考虑机器人的整体尺寸和齿轮系的公式。由于大量的方程式共同决定着参数,人工计算无法得到最优解。所以可以通过 MATLAB 来解方程得出最优解。该过程需要考虑的尺寸列在 图 10 和表 1 中。 图 10 主要的长度确定其他维度 表 1 尺寸参数的机器人 附件 2:外文原文 (复印件) ResQuake: A Tele-Operative Rescue Robot The design procedure of ResQuake as a tele-operative rescue robot and its dynamics analysis, manufacturing procedure, control system, and slip estimation for performance improvement are discussed. First, the general task to be performed by the robot is defined, and various mechanisms to form the basic structure of the robot are discussed. Choosing the appropriate mechanisms, geometric dimensions, and mass properties are detailed to develop kinematic and dynamic models for the system. Next, the strength of each component is analyzed to finalize its shape, and the mechanism models are presented. Then, the control system is briefly described, which includes the operators PC as the master processor, and the laptop installed on the robot as the slave processor. Finally, slip coefficients of tracks are identified and validated by experimental tests to improve the system tracking performance. ResQuake has participated with distinction in several rescue robot leagues. DOI: 10.1115/1.3179117 Keywords: mobile robots, tele-operative, locomotion mechanisms, control architecture, slippage estimation 1 Introduction Mobile manipulators, which consist of a platform and one or more manipulators, have an unlimited workspace. Therefore, various legged, wheeled, tracked, and flying systems have been proposed, and successfully put into practice. Such systems are used in different kinds of fields such as fire fighting, forestry, deactivating bombs, toxic waste cleanup, transportation of materials, space onorbit services, and similar applications in which human health is endangered 1. So, it is expected that mobile robots, whether autonomous or tele-operative, play a more important role in different fields of human life. However, in a mobile robotic system, dynamic forces affect the motion of the base and the manipulators, based on the action and reaction principle. Therefore, kinematics, dynamics, and control of such systems have received extensive research attention 25. Earthquake is a natural incident, which threatens human life. Aftershocks occurring a while after the main earthquake cause secondary collapses and may take victims away from the search and rescue personnel. In order to minimize the risks for rescuers, while increasing victim survival rates, exploiting fielding teams of collaborative robots is a good alternative. The mission for the robots and their operators would be to find victims, determine their situation, and then report their findings based on a map of the building 6,7. This information will immediately be given to human rescue teams. Further expectations of rescue robots such as being able to autonomously search collapsed structures, finding victims and ascertain their conditions, delivering sustenance and communications to the victims, and emplacing sensors (acoustic, thermal, seismic, etc.) are ongoing research subjects. Nevertheless, the basic capability of rescue robots is their maneuverability in destructed areas, which thoroughly depends on their locomotion system and their dimensions. Various rescue robots were designed and manufactured so far 8,9. This paper presents an illustrative description of the ResQuake project at Khaje Nasir Toosi University (KNTU), as shown in Fig. 1. First, designing procedure for the locomotion mechanism will be detailed, and the system dimensions and related parameters are determined. Next, the system kinematics and dynamics is discussed, and the sequence of stress analysis for each member of the mechanism is addressed. Then, the robot control system is described. Finally, slip coefficients are identified and validated by various tests to improve the system tracking performance. ResQuake has great capabilities for moving in unstructured environment, on rough trains, and even climbing stairs, with a user-friendly operative interface. Its performance has been demonstrated in the rescue robot league of RoboCup 2005 in Osaka, Japan, achieving the second best design award, RoboCup 2006 in Bremen, Germany, achieving the best operator interface award, and RoboCup 2008 in Suzhou, China, achieving the second best award for mobility. Fig. 1 ResQuake in different conditions;(left)folded tracks,(right)extended tracks climbing up a ramp uneven surface 2 Mechanism Design There are three major categories of search and rescue robots in terms of their locomotion system, i.e., wheeled, tracked, and legged robots. Wheeled robots could be considered for searching flat areas. Developing the autonomy for these systems is easier due to their simple dynamics. A wheeled robot is also capable of climbing obstacles with a height smaller than their wheels. Tracked robots are used mostly because of their great ability to move on uneven terrains. Figure 2 shows wheeled and tracked systems facing the same obstacle _stair_. It can be seen that a smaller tracked robot has the same capability. Fig. 2 Two types of locomotion systems encountering the same obstacle Legged robots usually possess high degrees of freedom (DOFs), and thus, high maneuverability. Consequently, dynamics modeling and stability of such systems is more complicated than the former types. Besides, implementation of such systems requires numerous actuators and sensors, so their control is more expensive. It should be also mentioned that with a combination of the two wheeled and legged mechanisms, advantages of both locomotion systems can be preserved while shortcomings are prevented (10). In a hybrid wheel-legged mechanism, wheeled mechanism can support the weight of the legged mechanism, while the legged mechanism can move the robot on a rough terrain. Regardless of the type of locomotion system, the size of a rescue robot is also an important issue. In a destructed indoor environment, some obstacles may exist such as collapsed walls or ceilings that cannot be easily passed by usual systems. In such situations, the robot should search for a bypass or a way between the obstacles rather than climbing over them; that definitely depends on its size. A relatively small robot can easily pass a narrow passageway and continue its search. It should be noted that stairways are an inseparable part of an indoor environment. Whether destructed or not, a rescue robot should have the ability to climb up and down stairways in order to search the whole area. In order to compromise between the two contradictory aspects of providing a small robot with high maneuverability, a tracked mechanism has been developed for ResQuake. This mechanism includes a main body (base) with two expandable tracks (arms). This arrangement enables the robot to resize depending on the situation it encounters. Accordingly, these tracks should have a minimum length to prevent loosing its balance, and having a steady movement on successive stairs without extra vibrations, as shown in Fig. 3(a). On the other hand, lengthy tracks such as those of a simple track robot will require a wide area for turning, as shown in Fig. 3(b), which is rarely available in a destructed environment. Fig. 3 (a) Minimum length for tracks of the robot and (b) minimum turning radius of a simple track robot 2.1 Expandable Tracks(Arms) The structure shown in Fig. 4 enables the robot to expand the length of its tracks to pass through obstacles. On the other hand, when the robot is going through narrow passages and needs to be rather small, the front tracks can be folded. This helps with reducing the turning radius as well. Folding arms was the original idea, developed to overcome the aforementioned contradiction. This concept has been improved to a system with two pairs of arms at both sides of the vehicle, as shown in Fig. 4(b), to reduce the length of the robot with folded arms while the expanded length fulfills other requirement. Another advantage would be the symmetry of the structure, which enables the robot to move equivalently in both forward and backward directions. This arrangement facilitates turning in a confined space. Next, the arms are placed in the same plane to reduce the robot width (Fig. 5_a). Finally, another joint is added to each arm in order to use an extra area between the arms when they are folded, Fig. 5(b). Therefore, the tracks on each side of the robot are stretched into three parallel planes, which provide a more efficient traction. Fig. 4 (a) Preliminary design of just front tracks (arm) and (b) improved design with two pairs of arms (front and rear) Fig. 5 (a) Making the tracks collinear to reduce the width of robot and (b) final mechanism chosen for the tracks Adding four independent (active) joints to the system would increase the number of actuators and consequently the total price of the system. Therefore, a planetary gear set has been used to simply transmit the power of the main joint of each arm to its second joint. So, rotation of the two parts for each arm will be dependent. The gear ratio is obtained, considering two desirable configurations of the arms; (i) fully stretched and (ii) fully folded, such that the arms can move, based on a desired plan between these two configurations (Fig. 6). Fig. 6 The path for motion of the arms As shown in Fig. 6, for a pai/2 rad rotation of the main part of arm, the second part should rotate more than pai rad. The gear chain with such performance should be a planetary gearbox. The main part of the first arm plays the role of the arm in the planetary chain, which is directly powered by a motor. The sun gear should be attached to the main body of the robot, and the planet gear is attached to the second part of the arm. A pair of medium gears is placed between the sun and the planet where the diameter of gears does not exceed a given threshold, which is the diameter of the main wheels of the tracks (Fig. 7). Another advantage of this mechanism is that the center distance of the two joints of the arm will remain constant during its rotation. This enables us to fill the gap between the main track, and the arm with another track. This track is used to transmit power from the main part of the tracks to the second part on the arm. Fig. 7 Planetary gear chain Helical gears are chosen for the planetary gear set, due to their small backlash and higher strength of gear tooth comparing with spur gears 11, 12. The angular velocity of the arm should be less than 24 rpm. The motors output velocity is 3000 rpm. Hence, the velocity ratio between the motor and the link should be approximately 1000. A combination of a three stage planetary gearbox (constructed right at the motor shaft where the angular velocity is relatively high) with a ratio of 3:1 at each stage, and a worm gear set with a ratio of 30:1 provides the desirable ratio in a limited available space (Fig. 8). A dc motor drives the tracks at each side of the robot. Fig. 8 Final designed arrangement for the arms 2.2 Tracks The traction of the locomotion system strongly depends on the friction between the track pieces and the surface on which the robot moves. Therefore, the material and the shape of the track pieces are of great importance 13. On the other hand, the tracks should also bear a reasonable tension. Designed tracks are made of two main parts. A basis of chain-sprocket provides the system with sufficient tensile strength, and tooth shaped pieces made of latex fills the gap between the chain and the surface to create the required friction. Metal chains have been modified by replacing pins of the s
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广东广州医科大学附属第五医院第一次招聘17人考前自测高频考点模拟试题及答案详解(历年真题)
- 2025年新乡延津县选调县外在编在岗教师回乡任教的考前自测高频考点模拟试题及完整答案详解1套
- 2025年甘肃省定西市临洮县中铺镇选聘摩云村文书考前自测高频考点模拟试题有答案详解
- 安全培训教室设备清单表课件
- 2025年光伏发电用控制器项目发展计划
- 2025北京邮电大学与通信工程学院招聘1人(人才派遣)模拟试卷及答案详解1套
- 2025甘肃张掖市教育局培黎职业学院引进高层次人才14人考前自测高频考点模拟试题附答案详解(典型题)
- 2025年中职高考对口升学(理论考试)真题卷【轻工纺织大类】模拟练习
- 2025江苏南京市浦口区卫健委所属事业单位招聘高层次人才11人考前自测高频考点模拟试题及参考答案详解一套
- 小学安保人员安全培训课件
- 2025年广西继续教育公需科目考试试题和答案
- 系统性风险压力测试框架-洞察阐释
- 数据迁移及备份服务合同
- 子宫动脉栓塞术后护理常规
- 教育中的数字化转型读书心得体会
- 幼儿园一日工作流程解读
- 纤支镜灌洗的术前术后护理讲课件
- 加气站风控分级管理制度
- 乡墅建房公司运营管理制度
- 学习通《大学生就业指导》章节测试含答案
- 工程机械发动机课件
评论
0/150
提交评论