




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课 题24.1 二次函数yax2+bx+c的图象课型新授课教学目标1会用描点法画出二次函数 与 的图象;2能结合图象确定抛物线 与 的对称轴与顶点坐标;3通过比较抛物线 与 同 的相互关系,培养观察、分析、总结的能力;教学重点画出形如 与形如 的二次函数的图象,能指出上述函数图象的开口方向,对称轴,顶点坐标.教学难点理解函数 、 与 及其图象间的相互关系.教学方法探索研究法。一、创设问题情境,引入新课我们已学习过两种类型的二次函数,即y=ax2与y=ax2+c,知道它们都是轴对称图形,对称轴都是y轴,有最大值或最小值顶点都是原点还知道yax2+c的图象是函数y=ax2的图象经过上下移动得到的,那么y=ax2的图象能否左右移动呢?它左右移动后又会得到什么样的函数形式,它又有哪些性质呢?本节课我们就来研究有关问题二、新课讲解1、比较函数y3x2与y3(X-1)2的图象的性质(1)完成下表,并比较3x2和3(x-1)2的值,它们之间有什么关系?X-3-2-1012343x23(x-1)2(2)在下图中作出二次函数y3(x-1)2的图象你是怎样作的?(3)函数y3(x-1)2的图象与y=3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?(4)x取哪些值时,函数y3(x-1)2的值随x值的增大而增大?x取哪些值时,函数y3(x-1)2的值随x值的增大而减小? 请大家先自己填表,画图象,思考每一个问题,然后互相讨论,总结 (1)第二行从左到右依次填:2712,3,0,3,12,27,48;第三行从左到右依次填48,27,12,3,0,3,12,27 (2)用描点法作出y3(x-1)2的图象,如上图 (3)二次函数)y3(x-1)2的图象与y=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,y3(x-1)2的图象的对称轴是直线x=1,顶点坐标是(1,0) (4)当x1时,函数y3(x-1)2的值随x值的增大而增大,x0时,向上移动,当c0时,向右移动,当h0时,向左移动(3)将函数yax2的图象既上下移,又左右移,便可得到函数ya(x-h)+k的图象因此,这些函数的图象都是一条抛物线,它们的开口方向,对称轴和顶点坐标与a,h,k的值有关下面大家经过讨论之后,填写下表:y=a(x-h)2+k开口方向对称轴顶点坐标a0a04、议一议 (1)二次函数y=3(x+1)2的图象与二次函数y3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?(2)二次函数y=-3(x-2)2+4的图象与二次函数y=-3x2的图象有什么关系?它是轴对称图形吗?它的对称轴和顶点坐标分别是什么?(3)对于二次函数y3(x+1)2,当x取哪些值时,y的值随x值的增大而增大?当x取哪些值时,y的值随x值的增大而减小?二次函数y3(x+1)2+4呢? 在不画图象的情况下,你能回答上面的问题吗? (1)二次函数y3(x+1)2的图象与y3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,y=3(x+1)2的图象的对称轴是直线x=-1,顶点坐标是(-1,0)只要将y3x2的图象向左平移1个单位,就可以得到y=3(x+1)2的图象 (2)二次函数y-3(x-2)2+4的图象与y-3x2的图象形状相同,只是位置不同,将函数y-3x2的图象向右平移2个单位,就得到y=-3(x-2)2的图象,再向上平移4个单位,就得到y=-3(x-2)2+4的图象y=-3(x-2)2+4的图象的对称轴是直线x=2,顶点坐标是(2,4) (3)对于二次函数y=3(x+1)2和y3(x+1)2+4,它们的对称轴都是x-1,当x-1时,y的值随x值的增大而增大三、课堂练习 看大屏幕四、课时小结 本节课进一步探究了函数y=3x2与y3(x-1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新解读《GB-T 32498-2016金属基复合材料 拉伸试验 室温试验方法》
- 高砂窑炉安全知识培训课件
- 北京交通运输管理考试及答案
- PhIP-Standard-生命科学试剂-MCE
- BAT-1308-生命科学试剂-MCE
- 北华大学线上考试题目及答案
- 保育师考试题中级题库及答案
- 家政中级考试题及答案
- 中级软考试题及答案
- 电炉知识培训总结与反思课件
- 建设工程管理的毕业论文
- 中国工笔花鸟画技法课件
- 正面吊安全管理制度
- 台球俱乐部工作管理制度
- 肉毒素中毒的治疗讲课件
- 中医辨证施护课件
- 学校十五五规划(同名11527)
- 高中心理健康测试题及答案大全
- 小学二年级上册《健康成长》全册教学设计
- 蓝色简约风医学生职业生涯规划展示模板
- T/SHPTA 031-2022电缆和光缆用复合防护尼龙12护套料
评论
0/150
提交评论