




已阅读5页,还剩65页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 第十章信道编码和差错控制 10 1概述信道编码 目的 提高信号传输的可靠性 方法 增加多余比特 以发现或纠正错误 差错控制 包括信道编码在内的一切纠正错误手段 产生错码的原因 乘性干扰引起的码间串扰加性干扰引起的信噪比降低信道分类 按照加性干扰造成错码的统计特性不同划分随机信道 错码随机出现 例如由白噪声引起的错码突发信道 错码相对集中出现 例如由脉冲干扰引起的错码 混合信道 2 差错控制技术的种类 检错重发 能发现错码 但是不能确定错码的位置 通信系统需要有双向信道 前向纠错 FEC 利用加入的差错控制码元 不但能够发现错码 还能纠正错码 反馈校验 将收到的码元转发回发送端 将它和原发送码元比较 缺点 需要双向信道 传输效率也较低 检错删除 在接收端发现错码后 立即将其删除 适用在发送码元中有大量多余度 删除部分接收码元不影响应用之处 3 编码序列的参数n 编码序列中总码元数量k 编码序列中信息码元数量r 编码序列中差错控制码元数量 差错控制码元 以后称为监督码元或监督位 k n 码率 n k k r k 冗余度 4 自动要求重发 ARQ 系统停止等待ARQ系统拉后ARQ系统 5 选择重发ARQ系统ARQ和前向纠错比较 优点监督码元较少 即码率较高检错的计算复杂度较低能适应不同特性的信道缺点需要双向信道 不适用于一点到多点的通信系统或广播系统 传输效率降低 可能因反复重发而造成事实上的通信中断 6 10 2纠错编码的基本原理分组码举例设 有一种由3个二进制码元构成的编码 它共有23 8种不同的可能码组 000 晴001 云010 阴011 雨100 雪101 霜110 雾111 雹这时 若一个码组中发生错码 则将收到错误信息 若在此8种码组中仅允许使用4种来传送天气 例如 令000 晴011 云101 阴110 雨为许用码组 其他4种不允许使用 称为禁用码组 这时 接收端有可能发现 检测到 码组中的一个错码 这种编码只能检测错码 不能纠正错码 若规定只许用两个码组 例如000 晴111 雨就能检测两个以下错码 或纠正一个错码 7 分组码概念分组码 信息位 监督位分组码符号 n k 其中 n 码组总长度 k 信息码元数目 r n k 监督码元数目 右表中的码组为 3 2 码 分组码的一般结构 分组码的参数 码重 码组内 1 的个数码距 两码组中对应位取值不同的位数 又称汉明距离最小码距 d0 各码组间的最小距离 8 码距的几何意义 以n 3的编码为例一般而言 码距是n维空间中单位正多面体顶点之间的汉明距离 9 一种编码的纠检错能力 决定于最小码距d0的值 为了能检测e个错码 要求最小码距为了能纠正t个错码 要求最小码距 10 为了能纠正t个错码 同时检测e个错码 要求最小码距纠检结合工作方式 当错码数量少时 系统按前向纠错方式工作 以节省重发时间 提高传输效率 当错码数量多时 系统按反馈重发的纠错方式工作 以降低系统的总误码率 11 10 3纠错编码系统的性能10 3 1误码率性能和带宽的关系采用编码降低误码率所付出的代价是带宽的增大 12 10 3 2功率和带宽的关系采用编码以节省功率 并保持误码率不变 付出的代价也是带宽增大 13 10 3 3传输速率和带宽的关系对于给定的传输系统 其传输速率和Eb n0的关系 式中 RB 码元速率 提高传输速率 采用编码以保持误码率不变 付出的代价仍是带宽增大 14 10 3 4编码增益定义 在保持误码率恒定条件下 采用纠错编码所节省的信噪比Eb n0称为编码增益 式中 Eb n0 u 未编码时的信噪比 dB Eb n0 c 编码后所需的信噪比 dB 15 10 4奇偶监督码10 4 1一维奇偶监督码奇偶监督码 分为奇数监督码和偶数监督码两类 在奇偶监督码中 监督位只有1位 故码率等于k k 1 偶数监督码中 此监督位使码组中 1 的个数为偶数 式中 a0为监督位 其他位为信息位 奇数监督码中 此监督位使码组中 1 的个数为奇数 16 检错能力 能够检测奇数个错码 设 码组长度为n 码组中各个错码的发生是独立的和等概率的 则在一个码组中出现j个错码的概率为式中 为在n个码元中有j个错码的组合数 奇偶监督码不能检测码组中出现的偶数个错码 所以在一个码组中有错码而不能检测的概率等于 当n为偶数时 当n为奇数时 17 例 右表中的编码是偶数监督码 设信道的误码率为10 4 错码的出现是独立的 试计算其不能检测的误码率 将给定条件代入式计算得出由计算结果可见 此编码可以将误码率从10 4降低到10 8量级 效果非常明显 18 10 4 2二维奇偶监督码码率等于有可能检测偶数个错码适合检测突发错码能够纠正部分错码 19 10 5线性分组码基本概念代数码 利用代数关系式产生监督位的编码线性分组码 代数码的一种 其监督位和信息位的关系由线性代数方程决定汉明码 一种能够纠正一个错码的线性分组码校正子 在偶数监督码中 计算实际上就是计算并检验S是否等于0 S称为校正子 监督关系式 20 纠错基本原理中 S只有两种取值 故只能表示有错和无错 而不能进一步指明错码的位置 若此码组长度增加一位 则能增加一个监督关系式 这样 就能得到两个校正子 两个校正子的可能取值有4种组合 即00 01 10 11 故能表示4种不同的信息 若用其中一种组合表示无错码 则还有其他3种组合可以用于指明一个错码的3种不同位置 从而可以有纠错能力 一般而言 若有r个监督关系式 则r个校正子可以指明一个错码的 2r 1 个不同位置 当校正子可以指明的错码位置数目等于或大于码组长度n时 才能够纠正码组中任何一个位置上的错码 即要求 21 汉明码例 要求设计一个能够纠正1个错码的分组码 n k 给定的码组中有4个信息位 即k 4 由这时要求监督位数r 3 若取r 3 则n k r 7 现在用a6a5a4a3a2a1a0表示这7个码元 用S1S2S3表示校正子 则这3个校正子恰好能够指明23 1 7个错码的位置 若规定校正子和错码位置的关系如下表 则仅当在a6a5a4a2位置上有错码时 校正子S1的值才等于1 否则S1的值为零 这就意味着a6a5a4a2四个码元构成偶数监督关系 同理 有 22 在编码时 信息位a6a5a4a3的值决定于输入信号 它们是随机的 监督位a2a1a0是按监督关系确定的 应该保证上列3式中的校正子等于0 即有给定信息位后 为了计算监督位 上式可以改写为按照上式计算结果为 23 在接收端解码时 对于每个接收码组 先按式计算出校正子S1 S2和S3 然后按照表判断错码的位置 例 若接收码组为0000011 则按上三式计算得到 S1 0 S2 1 S3 1 这样 由上表可知 错码位置在a3 24 上例中的汉明码是 7 4 码 其最小码距d0 3 由式可知 此码能够检测2个错码 或纠正1个错码 汉明码的码率 当r 或n 很大时 上式趋近于1 所以汉明码是一种高效编码 25 分组码的一般原理线性分组码的监督位和信息位的关系可以改写为上式中 已经将 简写成 26 监督矩阵上式可以写成矩阵形式 模2 将上式简写为HAT 0T或AHT 0 27 HAT 0T式中 称为监督矩阵监督矩阵的性质监督矩阵H确定码组中的信息位和监督位的关系 H的行数就是监督关系式的数目 即监督位数r H的每行中 1 的位置表示相应的码元参与监督关系 H可以分成两部分 例如 典型监督矩阵式中 P为r k阶矩阵 Ir为r r阶单位方阵 28 H矩阵的各行应该是线性无关的 否则将得不到r个线性无关的监督关系式 若一个矩阵能写成典型阵形式 PIr 则其各行一定是线性无关的 生成矩阵例 可以写为上式两端分别转置后 可以变成式中 Q为k r阶矩阵 是P的转置 即Q PT 29 将Q的左边加上一个k阶单位方阵 称为生成矩阵 生成矩阵G称为生成矩阵 因为可以用它产生整个码组A 即有生成矩阵的性质具有 IkQ 形式的生成矩阵称为典型生成矩阵 由典型生成矩阵得出的码组A中 信息位的位置不变 监督位附加于其后 这种形式的码组称为系统码 矩阵G的各行也必须是线性无关的 如果已有k个线性无关的码组 则可以将其用来作为生成矩阵G 并由它生成其余码组 30 错误图样设 发送码组A是一个n列的行矩阵 接收码组是一个n列的行矩阵B 令接收码组和发送码组之差为E就是错码的行矩阵 称为错误图样式中 i 0 1 n 1 若ei 0 表示该码元未错 若ei 1 表示该码元为错码 31 校正子矩阵B A E可以改写成B A E上式表示发送码组A与错码矩阵E之和等于接收码组B 例如 若发送码组A 1000111 错码矩阵E 0000100 则接收码组B 1000011 在接收端解码时 将接收码组B代入式AHT 0中A的位置进行计算 若接收码组中无错码 则B A 代入后 该式仍成立 即有BHT 0只有当错码未超出检测能力时 上式才不成立 假设 这时该式的右端等于S 即有BHT S将B A E代入上式 得到 S A E HT AHT EHT 32 S A E HT AHT EHT上式右端第一项等于0 所以S EHT 校正子矩阵当H确定后 上式中S只与E有关 而与A无关 这意味着 S和错码E之间有确定的线性变换关系 若S和E有一一对应关系 则S将能代表错码位置 线性码的封闭性 若A1和A2是一种线性码中的两个码组 则 A1 A2 仍是其中一个码组 证 若A1和A2是两个码组 则有 A1HT 0 A2HT 0将上两式相加 得出A1HT A2HT A1 A2 HT 0所以 A1 A2 也是一个码组 由于线性码具有封闭性 所以两个码组 A1和A2 之间的距离 即对应位不同的数目 必定是另一个码组 A1 A2 的重量 即 1 的数目 因此 码的最小距离就是码的最小重量 除全 0 码组外 33 10 6循环码10 6 1循环码的概念 循环性是指任一码组循环一位后仍然是该编码中的一个码组 例 一种 7 3 循环码的全部码组如下表中第2码组向右移一位即得到第5码组 第5码组向右移一位即得到第7码组 34 一般情况若 an 1an 2 a0 是循环码的一个码组 则循环移位后的码组 an 2an 3 a0an 1 an 3an 4 an 1an 2 a0an 1 a2a1 仍然是该编码中的码组 多项式表示法一个长度为n的码组 an 1an 2 a0 可以表示成上式中x的值没有任何意义 仅用它的幂代表码元的位置 例 码组1100101可以表示为 35 10 6 2循环码的运算整数的按模运算在整数运算中 有模n运算 例如 在模2运算中 有1 1 2 0 模2 1 2 3 1 模2 2 3 6 0 模2 等等 一般说来 若一个整数m可以表示为式中 Q为整数 则在模n运算下 有m p 模n 所以 在模n运算下 一个整数m等于它被n除得的余数 36 码多项式的按模运算若任意一个多项式F x 被一个n次多项式N x 除 得到商式Q x 和一个次数小于n的余式R x 即则在按模N x 运算下 有这时 码多项式系数仍按模2运算 例1 x3被 x3 1 除 得到余项1 即例2 因为xx3 1x4 x2 1x4 xx2 x 1在模2运算中加法和减法一样 37 循环码的数学表示法在循环码中 设T x 是一个长度为n的码组 若则T x 也是该编码中的一个码组 证 设一循环码为则有上式中的T x 正是码组T x 向左循环移位i次的结果 例 一循环码为1100101 即若给定i 3 则有上式对应的码组为0101110 它正是T x 向左移3位的结果 结论 一个长为n的循环码必定为按模 xn 1 运算的一个余式 38 循环码的生成有了生成矩阵G 就可以由k个信息位得出整个码组 例 式中 生成矩阵G的每一行都是一个码组 因此 若能找到k个已知的码组 就能构成矩阵G 如前所述 这k个已知码组必须是线性不相关的 在循环码中 一个 n k 码有2k个不同的码组 若用g x 表示其中前 k 1 位皆为 0 的码组 则g x xg x x2g x xk 1g x 都是码组 而且这k个码组是线性无关的 因此它们可以用来构成此循环码的生成矩阵G 39 在循环码中除全 0 码组外 再没有连续k位均为 0 的码组 否则 在经过若干次循环移位后将得到k位信息位全为 0 但监督位不全为 0 的一个码组 这在线性码中显然是不可能的 因此 g x 必须是一个常数项不为 0 的 n k 次多项式 而且这个g x 还是这种 n k 码中次数为 n k 的唯一一个多项式 因为如果有两个 则由码的封闭性 把这两个相加也应该是一个码组 且此码组多项式的次数将小于 n k 即连续 0 的个数多于 k 1 显然 这是与前面的结论矛盾的 我们称这唯一的 n k 次多项式g x 为码的生成多项式 一旦确定了g x 则整个 n k 循环码就被确定了 40 因此 循环码的生成矩阵G可以写成例 上表中的编码为 7 3 循环码 n 7 k 3 n k 4 其中唯一的一个 n k 4次码多项式代表的码组是第二码组0010111 与它对应的码多项式 即生成多项式 为g x x4 x2 x 1 41 g x x4 x2 x 1即 10111 将此g x 代入上矩阵 得到或上式不符合G IkQ 形式 所以它不是典型生成矩阵 但它经过线性变换后 不难化成典型阵 此循环码组的多项式表示式T x 上式表明 所有码多项式T x 都能够被g x 整除 而且任意一个次数不大于 k 1 的多项式乘g x 都是码多项式 42 寻求码生成多项式因为任意一个循环码T x 都是g x 的倍式 故它可以写成T x h x g x 而生成多项式g x 本身也是一个码组 即有T x g x 由于码组T x 是一个 n k 次多项式 故xkT x 是一个n次多项式 由可知 xkT x 在模 xn 1 运算下也是一个码组 所以有上式左端分子和分母都是n次多项式 故相除的商式Q x 1 因此 上式可以写成 43 将T x h x g x 和T x g x 代入化简后 得到上式表明 生成多项式g x 应该是 xn 1 的一个因子 例 x7 1 可以分解为为了求出 7 3 循环码的生成多项式g x 需要从上式中找到一个 n k 4次的因子 这样的因子有两个 即以上两式都可以作为生成多项式 选用的生成多项式不同 产生出的循环码码组也不同 44 10 6 3循环码的编码方法用xn k乘m x 这一运算实际上是在信息码后附加上 n k 个 0 例如 信息码为110 它写成多项式为m x x2 x 当n k 7 3 4时 xn km x x4 x2 x x6 x5 它表示码组1100000 用g x 除xn km x 得到商Q x 和余式r x 即有例 若选定g x x4 x2 x 1 则有上式是用码多项式表示的运算 它和下式等效 编出的码组T x 为 T x xn km x r x 在上例中 T x 1100000 101 1100101 45 10 6 4循环码的解码方法在检错时 当接收码组没有错码时 接收码组R x 必定能被g x 整除 即下式中余项r x 应为零 否则 有误码 当接收码组中的错码数量过多 超出了编码的检错能力时 有错码的接收码组也可能被g x 整除 这时 错码就不能检出了 在纠错时 用生成多项式g x 除接收码组R x 得出余式r x 按照余式r x 用查表的方法或计算方法得出错误图样E x 从R x 中减去E x 便得到已经纠正错码的原发送码组T x 46 10 6 5截短循环码截短目的 在设计时 通常信息位数k 码长n和纠错能力都是预先给定的 但是 并不一定有恰好满足这些条件的循环码存在 故采用截短码长截短 得出满足要求的编码 截短方法 设给定一个 n k 循环码 它共有2k种码组 现使其前i 0 i k 个信息位全为 0 于是它变成仅有2k i种码组 然后从中删去这i位全 0 的信息位 最终得到一个 n i k i 的线性码 将这种码称为截短循环码 截短循环码与截短前的循环码至少具有相同的纠错能力 并且截短循环码的编解码方法仍和截短前的方法一样 例 要求构造一个能够纠正1位错码的 13 9 码 这时可以由 15 11 循环码的11种码组中选出前两信息位均为 0 的码组 构成一个新的码组集合 然后在发送时不发送这两位 0 于是发送码组成为 13 9 截短循环码 47 10 6 6BCH码BCH码是能够纠正多个随机错码的循环码 BCH码分为两类 本原BCH码和非本原BCH码 本原BCH码 码长n 2m 1 m 3 任意正整数 它的生成多项式g x 中含有最高次数为m次的本原多项式 非本原BCH码 码长n是 2m 1 的一个因子 它的生成多项式g x 中不含有最高次数为m的本原多项式 BCH码的工程设计 可以用查表法找到所需的生成多项式 例 二进制非本原BCH码的生成多项式系数表中g x 是用8进制数字表示的 t为纠错能力 48 常用BCH码 戈莱 Golay 码 23 12 非本原BCH码 它能纠正3个随机错码 并且容易解码 扩展BCH码 n 1 k BCH码的长度为奇数 在应用中 为了得到偶数长度的码 并增大检错能力 可以在BCH码生成多项式中乘上一个因式 x 1 从而得到扩展BCH码 n 1 k 扩展BCH码已经不再具有循环性 扩展戈莱码 24 12 其最小码距为8 码率为1 2 能够纠正3个错码和检测4个错码 49 几种二进制分组码的性能比较 50 10 6 7RS码RS码 是q进制BCH码的一个特殊子类 并且具有很强的纠错能力 RS码的参数 码长n q 1 监督位数目r 2t 其中t是能够纠正的错码数目 其生成多项式为g x x x 2 x 2t 式中 为伽罗华域GF 2m 中的本原元 RS码的主要优点 它是多进制纠错编码 所以特别适合用于多进制调制的场合 它能够纠正t个q位二进制错码 即能够纠正不超过q个连续的二进制错码 所以适合在衰落信道中纠正突发性错码 51 10 7卷积码卷积码的特点 监督码元不仅和当前的k比特信息段有关 而且还同前面m N 1 个信息段有关 将N称为码组的约束长度 将卷积码记作 n k m 其码率为k n 52 卷积码的编码一般原理方框图 53 卷积码编码器的实例方框图 n k m 3 1 2 每当输入1比特时 此编码器输出3比特c1c2c3 编码器的工作状态 54 10 7 2卷积码的解码码树搜索法 3 1 2 卷积码的码树图此法不实用 因为随信息位增多 分支数目按指数规律增长 55 状态图和网格图移存器状态和输入输出码元的关系状态图 56 3 1 2 卷积码网格图网格图中的编码路径举例输入信息位为1101时输出编码序列是 111110010100011 57 维特比算法基本原理 将接收到的序列和所有可能的发送序列作比较 选择其中汉明距离最小的序列当作是现在的发送序列例 设卷积码为 n k m 3 1 2 码现在的发送信息位为1101为了使移存器中的信息位全部移出 在信息位后面加入了3个 0 即1101000编码后的发送序列 111110010100001011000接收序列 111010010110001011000 红色为错码 由于这是一个 3 1 2 卷积码 发送序列的约束长度为N m 1 3 所以首先需考察3个信息段 即考察3n 9比特 即接收序列前9位 111010010 58 解码第1步由网格图可见 沿路径每一级有4种状态a b c和d 每种状态只有两条路径可以到达 故4种状态共有8条到达路径 比较网格图中的这8条路径和接收序列之间的汉明距离 例如 由出发点状态a经过3级路径后到达状态a的两条路径中上面一条为 000000000 它和接收序列 111010010 的汉明距离等于5 下面一条为 111001011 它和接收序列的汉明距离等于3 59 将这8个比较结果列表如下 比较到达每个状态的两条路径的汉明距离 将距离小的一条路径保留 称为幸存路径 这样 就剩下4条路径了 即表中第2 4 6和8条路径 60 解码第2步 继续考察接收序列中的后继3个比特 110 计算4条幸存路径上增加1级后的8条可能路径的汉明距离 计算结果列于下表中 表中总距离最小为2 其路径是abdc b 相应序列为11
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国钢结构建筑抗震设计规范与技术标准报告
- 2025-2030中国金融科技监管政策演变与合规发展路径研究报告
- 2025-2030中国都市圈轨道交通规划分析及TOD开发模式与基础设施REITs报告
- 2025-2030中国装配式建筑渗透率及成本效益与REITs投资价值报告
- 北京市昌平区新道临川学校2026届物理八上期末联考试题含解析
- 2026届江苏省江都区曹王中学物理八上期末联考试题含解析
- 福建省厦门市第六中学2026届物理八年级第一学期期末综合测试模拟试题含解析
- 2026届安徽省蚌埠新城实验学校物理八年级第一学期期末联考试题含解析
- 地下物流通道对城市物流成本降低影响报告
- 宠物克隆成本效益分析2025年中小企业运营报告
- 江苏省扬州市梅岭中学 2024-2025学年上学期八年级英语10月月考试卷
- 摩托制造成本效益分析
- 地理第一章 地球单元检测卷-2024-2025学年七年级地理上学期(2024)人教版
- 2024年九年级化学上册暑假提升讲义(沪教版)认识化学科学(解析版)
- 用户体验 智能座舱人机界面评测规范-意见征求稿-2024-07-技术资料
- 建筑工程资料承包合同范本
- DB14-T 2490-2022 集装箱式锂离子电池储能电站防火规范
- 中压交联工序工艺培训
- 水质采样记录表
- 安克创新招聘测评题答案
- 一年级上册道法教学计划
评论
0/150
提交评论