已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
异面直线及所成的角 一 基础知识 2 空间两条直线的位置关系 异面直线 1 异面直线的定义 不同在任何一个平面内的两条直线叫作异面直线 空间两条直线 连结平面内一点与平面外一点的直线 和这个平面内不经过此点的直线是异面直线 3 异面直线的画法 平面衬托法 4 异面直线的判断 1 异面直线的判定定理 2 反证法 5 异面直线成的角 1 定义 2 取值范围 00 900 3 作法 平移法或补形法 4 两条直线互相垂直 相交直线的垂直 异面直线的垂直 分别平行于两条异面直线的两条相交直线所成的锐角 或直角 叫做这两条异面直线所成的角 设图中的正方体的棱长为a 图中哪些棱所在的直线与BA1成异面直线 求异面直线A1B与C1C的夹角的度数 图中哪些棱所在的直线与直线AA1垂直 例题1 例题2 下面两条直线是异面直线的是 A 不同在一个平面内的两条直线 B 分别在某两个平面内的两条直线 C 既不平行又不相交的两条直线 D 平面内的一条直线和平面外的一条直线 C 例题3 若a b是异面直线 b c是异面直线 则a c的位置关系是 A 相交 平行或异面B 相交或平行C 异面D 平行或异面 例4 如图 a b c为不共面的三条直线 且相交于一点O 点M N P分别在直线a b c上 点Q是b上异于N的点 判断MN与PQ的位置关系 并予以证明 解 例5 法一 在棱长是a的正方体ABCD A1B1C1D1中 点E F分别是BB1 CC1的中点 求直线AE与BF所成的角 例5 法二 在棱长是a的正方体ABCD A1B1C1D1中 点E F分别是BB1 CC1的中点 求直线AE与BF所成的角 解 例5 法三 在棱长是a的正方体ABCD A1B1C1D1中 点E F分别是BB1 CC1的中点 求直线AE与BF所成的角 解 变式一 M N为A1B1 BB1的中点 求AM与CN所成的角 变式二 求AE与BD1所成的角 直三棱柱ABC A1B1C1中角ACB 900 D1 F1分别是A1B1与A1C1的中点 若BC CA CC1 求BD1与AF1这两条异面直线所成的角 A A1 C B B1 C1 F1 D1 分析 恰当的平移是将异面直线所成的角转化为平面中的角的关键 例6 思路一 取BC中点G 连结F1G 则角AF1G 或其补角 为异面直线所成的角 解三角形AF1G可得 A B C A1 B1 C1 D1 F1 G B 思路二 延展平面BAA1B1 使A1E D1A1 则将BD1平移到AE 角EAF1 或其补角 即为BD1与AF1所成的角 A A1 C B1 F1 D1 E 例7 A为正三角形BCD所在平面外一点 且AB AC AD BC a E F分别是棱AD BC的中点 连结AF CE 如图所示 求异面直线AF CE所成角的余弦值 G 解 连结DF 取DF的中点G 连结EG CG 又E是AD的中点 故EG AF 所以 GEC 或其补角 是异面直线AF CE所成的角 异面直线AF CE所成角的余弦值是 例7 A为正三角形BCD所在平面外一点 且AB AC AD BC a E F分别是棱AD BC的中点 连结AF CE 如图所示 求异面直线AF CE所成角的余弦值 P 另解 延长DC至P 使DC CP E为AD中点 AP EC 故 PAF 或其补角 为异面直线AF CE所成的角 异面直线AF CE所成角的余弦值是 注意 补形平移 直接平移 中位线平移 平移 若用余弦定理求出cos 则异面直线所成的角为 如 若求出 则异面直线所成的角的余弦值为 异面直线所成的角 求异面直线所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 台州地区志愿者工作指南及手册
- 心理压力管理与心理调适实-用技巧
- 定安工会职业发展路径与面试准备策略分享
- 婚礼策划师工作计划与婚礼执行方案
- 培训部员工培训计划与效果评估方案
- 小红书园艺种植与花草养护技巧
- 2026年一级建造师之一建市政公用工程实务考试题库500道及完整答案(网校专用)
- 教师资格证面试高分案例解析全面提升教学能力之道
- 2024安徽安庆怀宁县总工会社会化工作者招聘2人备考题库附答案解析
- 2022辽宁省高校毕业生“三支一扶”计划招募350人历年真题汇编及答案解析(夺冠)
- 土方机械安全培训课件
- 基于磁流耦合模型的连铸结晶器电磁搅拌参数优化:理论、模拟与实践
- 口腔癌手术后护理指南
- 物体表面清洁与消毒课件
- 酒店员工服务意识培训
- 瘦脸针课件教学课件
- 2025年水利部事业单位招聘考试《水利相关知识》题库归总(答案+解析)
- 2025年江西省高职单招文化统考(数学)
- 教师资格考试高级中学信息技术面试试题与参考答案(2025年)
- 2025广东深圳市宝安区建筑工务署第二批招聘员额制人员6人考试笔试参考题库附答案解析
- 一次性医疗用品使用管理制度
评论
0/150
提交评论