




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第 1 页(共 15 页) 2015年广东省广州市荔湾区八年级(上)期末数学试卷 一、选择题:本大题共 10小题,每小题 2分,共 20分在每小题给出的四个选项中,只有一项是符合题目要求的 1下列各组线段的长为边,能组成三角形的是( ) A 234 235 2510 844计算 0 的结果是( ) A 0 B 1 C 2004 D 2004 3如果把分式 中的 x、 y 都扩大到原来的 5 倍,那么分式的值( ) A扩大到原来的 25 倍 B扩大到原来的 5 倍 C不变 D缩小到原来的 4计算( 2结果是( ) A 1 B a C 下列图形不是轴对称图形的是( ) A B C D 6在建筑工地我们经常可看见如图所示用木条 定长方形门框 情形,这种做法根据是( ) A两点之间线段最短 B两点确定一条直线 C长方形的四个角都是直角 D三角形的稳定性 7下列说法正确的是( ) A所有的等边三角形都是全等三角形 B全等三角形是指面积相等的三角形 C周长相等的三角形是全等三角形 D全等三角形是指形状相同大小相等的三角形 8一个多边形的内角和是 720, 这个多边形的边数是( ) 第 2 页(共 15 页) A 4 B 5 C 6 D 7 9如图, , B=60, C, ,则 周长为( ) A 9 B 8 C 6 D 12 10如图,在 ,点 D 在 , D= B=80,则 C 的度数为( ) A 30 B 40 C 45 D 60 二、填空题:本大题共 6小题,每小题 3分,共 18分 11使分式 的值为零的条件是 x= 12如图, 中线, 周长差为 13如图,等腰 , C, 5, 垂直平分线 点 D,则 A 的度数是 14 , B=30, C=90, ,则 第 3 页(共 15 页) 15在 , , , 角平分线,则 面积之比是 16对于实数 a、 b,定义运算 如下: ab= ,例如, 24=2 4= 计算 22( 3) 2= 三、解答题:本大题共 7题,共 62分解答应写出文字说明、证明过程或演算步骤 17计算: ( 1)( a+3)( a 1) +a( a 2); ( 2)( 2x 3) 2( x+y)( x y) 18因式分解 ( 1) 4a; ( 2) 2128p 19计算: ( 1) ( 2) 20在平面直角坐标系中, P 点坐标为( 2, 6), Q 点坐标为( 2, 2),点 M 为 y 轴上的动点 ( 1)在平面直角坐标系内画出当 周长取最小值时点 M 的位置(保留作图痕迹) ( 2)写出点 M 的坐标 21如图,点 B 在线段 , D, B求证: A= E 第 4 页(共 15 页) 22甲、乙两人加工同一种机器零件,甲比乙每小时多加工 10 个零件,甲加工 150 个零件所用的时间与乙加工 120 个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件? 23在等边 0, 求证: ( 1) E; ( 2) C+2 第 5 页(共 15 页) 2015年广东省广州市荔湾区八年级(上)期末数学试卷 参考答案与试题解析 一、选择题:本大题共 10小题,每小题 2分,共 20分在每小题给出的四个选项中,只有一项是符合题目要求的 1下列各组线段的长为边,能组成三角形的是( ) A 234 235 2510 844考点】 三角形三边关系 【分析】 根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边即可求解 【解答】 解:根据三角形任意两边的和大于第三边,可知 A、 2+3 4,能组成三角形,故 A 正确; B、 2+3=5,不能组成三角形,故 B 错误; C、 2+5 10,不能够组成三角形,故 C 错误; D、 4+4=8,不能组成三角形,故 D 错误; 故选 A 【点评】 本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形 2计算 0 的结果是( ) A 0 B 1 C 2004 D 2004 【考点】 零指数幂 【分析】 根据非 0 数的零指数幂的定义可解答 0 【解答】 解 :原式 =1,故选 B 【点评】 解答此题的关键是要熟知,任何非 0 数的零次幂等于 1 3如果把分式 中的 x、 y 都扩大到原来的 5 倍,那么分式的值( ) A扩大到原来的 25 倍 B扩大到原来的 5 倍 C不变 D缩小到原来的 【考点】 分式的基本性质 【专题】 推理填空题;分式 【分析】 把分式 中的 x、 y 都扩大到原来的 5 倍, 5大到原来的 25( 55=25)倍,x+y 扩大到原来的 5 倍,所以分式的值扩大到原来的 5 倍,据此解答即可 【解答】 解:当 x、 y 都扩大到原来的 5 倍, 5大到原来的 25 倍, x+y 扩大到原来的 5 倍, 分式的值扩大到原来的 5 倍 故选: B 第 6 页(共 15 页) 【点评】 此题主要考查了分式的基本性质的应用,要熟练掌握,解答此题的关键是要明确:分式的分子与分母同乘(或除以)一个不等于 0 的整式,分式的值不变 4计算( 2结果是( ) A 1 B a C 考点】 同底数幂的除法;幂的乘方与积的乘方 【分析】 本题是幂的乘方与同底数幂的除法的混合运算,可根据法则先算乘方然后计算除法 【解答】 解:( 2a4=a6a4= 故选 C 【点评】 本题综合考查了同底数幂的除法和积的乘方,需熟练掌握且区分清楚,才不容易出错 5下列图形不是轴对称图形的是( ) A B C D 【考点】 轴对称图形 【分析】 根据轴对称图形的概念求解如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴 【解答】 解: A、是轴对称图形,故选项错误; B、不是轴对称图形,故选项正确; C、是轴对称图形,故选项错误; D、是轴对称图形,故选项错误 故选: B 【点评】 此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合 6在建筑工地我们经常可看见如图所示用木条 定长方形门框 情形,这种做法根据是( ) A两点之间线段最短 B两点确定一条直线 C长方形的四个角都是直角 D三角形的稳定性 【考点】 三角形的稳定性 【分析】 根据三角形的稳定性,可直接选择 【解答】 解:加上 ,原图形中具有 ,故这种做法根据的是三角形的稳定性 故选 D 【点评】 本题考查三角形稳定性的实际应用,三角形的稳定性在实际生活中有着广泛的应用,要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得 第 7 页(共 15 页) 7下列说法正确的是( ) A所有的等边三角形都 是全等三角形 B全等三角形是指面积相等的三角形 C周长相等的三角形是全等三角形 D全等三角形是指形状相同大小相等的三角形 【考点】 全等图形 【分析】 直接利用全等图形的定义与性质分析得出答案 【解答】 解: A、所有的等边三角形都是全等三角形,错误; B、全等三角形是指面积相等的三角形,错误; C、周长相等的三角形是全等三角形,错误; D、全等三角形是指形状相同大小相等的三角形,正确 故选: D 【点评】 此题主要考查了全等图形的性质与判定,正确利用全等图形的性质得出是解题关键 8一个多边形的内 角和是 720,这个多边形的边数是( ) A 4 B 5 C 6 D 7 【考点】 多边形内角与外角 【分析】 根据内角和定理 180( n 2)即可求得 【解答】 解: 多边形的内角和公式为( n 2) 180, ( n 2) 180=720, 解得 n=6, 这个多边形的边数是 6 故选 C 【点评】 本题主要考查了多边形的内角和定理即 180( n 2),难度适中 9如图, , B=60, C, ,则 周长为( ) A 9 B 8 C 6 D 12 【考点】 等边三角形的判定与性质 【专题】 计算题 【分析】 根据 B=60, C,即可判定 等边三角形,由 ,即可求出 【解答】 解:在 , B=60, C, B= C=60, A=180 60 60=60, 等边三角形, , 周长为: 3, 故选 A 【点评】 本题考查了等边三角形的判定与性质,属于基础题,关键是根据已知条件判定三角形为等边三角形 第 8 页(共 15 页) 10如图,在 ,点 D 在 , D= B=80,则 C 的度数为( ) A 30 B 40 C 45 D 60 【考点】 等腰三角形的性质 【分析】 先根据等腰三角形的性质求出 度数,再由平角的定义得出 度数,根据等腰三角形的性质即可得出结论 【解答】 解: , D, B=80, B= 0, 80 00, D, C= = =40 故选: B 【点评】 本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键 二、填空题:本大题共 6小题,每小题 3分,共 18分 11使分式 的值为零的条件是 x= 1 【考点】 分式的值为零的条件 【分析】 分式的值为零时,分子等于零,且分母不等于零 【解答】 解:由题意,得 x+1=0, 解得, x= 1 经检验, x= 1 时, =0 故答案是: 1 【点评】 本题考查了分式的值为零的条件若分式的值为零,需同时具备两个条件:( 1)分子为 0;( 2)分母不为 0这两个条件缺一不可 12如图, 中线, 周长差为 2 【考点】 三角形的角平分线、中线和高 【分析】 根据三角形的中线得出 D,根据三角形的周长求出即可 第 9 页(共 15 页) 【解 答】 解: 中线, D, 周长的差是:( D+( D+= 4=2 故答案为: 2 【点评】 本题主要考查对三角形的中线的理解和掌握,能正确地进行计算是解此题的关键 13如图,等腰 , C, 5, 垂直平分线 点 D,则 A 的度数是 50 【考点】 线段垂直平分线的性质;等腰三角形的性质 【分析】 根据线段垂直平分 线上的点到两端点的距离相等可得 D,根据等边对等角可得 A= 后表示出 根据等腰三角形两底角相等可得 C= 后根据三角形的内角和定理列出方程求解即可 【解答】 解: 垂直平分线, D, A= 5, A+15, C, C= A+15, A+ A+15+ A+15=180, 解得 A=50 故答案为: 50 【点评】 本题考查了线段垂直平分线上的点到两端点的距离相等的性 质,等腰三角形的性质,熟记性质并用 A 表示出 另两个角,然后列出方程是解题的关键 14 , B=30, C=90, ,则 8 【考点】 含 30 度角的直角三角形 【分析】 根据含 30角的直角三角形性质得出 入求出即可 【解答】 解: 在 , C=90, B=30, 第 10 页(共 15 页) , , 故答案为: 8 【点评】 本题考查了含 30角的直角三角形性质的应用,能 根据含 30角的直角三角形性质得出 解此题的关键 15在 , , , 角平分线,则 面积之比是 4: 3 【考点】 角平分线的性质 【分析】 估计角平分线的性质,可得出 边 的高与 的高相等,估计三角形的面积公式,即可得出 面积之比等于对应边之比 【解答】 解: 角平分线, 设 边 的高与 的高分别为 h1= 面积之比 =: 3, 故答案为 4: 3 【点评】 本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键 16对于实数 a、 b,定义运算 如下: ab= ,例如, 24=2 4= 计算 22( 3) 2= 【考点】 实数的运算;负整数指数幂 【专题】 新定义 【分析】 根据题目所给 的运算法则,分别计算出 22 和( 3) 2 的值,然后求解即可 【解答】 解: 22=2 2= , ( 3) 2=( 3) 2= , 则 22( 3) 2= = 故答案为: 【点评】 本题考查了实数的运算,解答本题的关键是读懂题意,根据题目所给的运算法则求解 三、解答题:本大题共 7题,共 62分解答应写出文字说明、证明过程或演算步骤 17计算: ( 1)( a+3)( a 1) +a( a 2); ( 2)( 2x 3) 2( x+y)( x y) 【考点】 整式的混合运算 第 11 页(共 15 页) 【分析】 ( 1)先算乘法,再合并同类项即可; ( 2)先算乘法,再合并同类项即可 【解答】 解:( 1)( a+3)( a 1) +a( a 2) =a+3a 3+2a =23; ( 2)( 2x 3) 2( x+y)( x y) 412x+9 x2+312x+9 【点评】 本题考查了整式的混合运算的应用,能熟记整式的运算法则是解此题的关键,注意运算顺序 18因式分解 ( 1) 4a; ( 2) 2128p 【考点】 提公因式法与公式法的综合运用 【分析】 ( 1)首先提取公因式,进而利用平方差公式分解因式即可; ( 2)首先提取公因式,进而利用完全平方公式分解即可 【解答】 解:( 1) 4a=a( 4) =a( x 2)( x+2); ( 2) 2128p =2p( 6m+9) =2p( m 3) 2 【点评】 此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键 19计算: ( 1) ( 2) 【考点】 分式的混合运算 【分析】 ( 1)首先进行通分,然后进行减法计算即可; ( 2)首先计算分式的乘法,然后通分进行分式的减法计算即可 【解答】 解:( 1)原式 = = = ; ( 2)原式 = + = + 第 12 页(共 15 页) = = 【点评】 本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键 20在平面直角坐标系中, P 点坐标为( 2, 6), Q 点坐标为( 2, 2),点 M 为 y 轴上的动点 ( 1)在平面直角坐标系内画出当 周长取最小值时点 M 的位置(保留作图痕迹) ( 2)写出点 M 的坐标 ( 0, 4) 【 考点】 轴对称 标与图形性质 【分析】 ( 1)作点 Q 关于 y 轴的对称点 Q,连接 y 轴与点 M,点 M 即为所求; ( 2)设直线 QP 的解析式为 y=kx+b,将点 Q、点 P 的坐标代入可求得 b=4,从而可得到点M 的坐标 【解答】 解:( 1)如图所示: ( 2)设直线 QP 的解析式为 y=kx+b,将点 Q、点 P 的坐标代入得: 解得: b=4 故点 M 的坐标为( 0, 4) 【点评】 本题主要考查 的是轴对称路径最短问题,明确当点 P、 M、 Q在一条直线上时, 21如图,点 B 在线段 , D, B求证: A= E 第 13 页(共 15 页) 【考点】 全等三角形的判定与性质 【专题】 证明题 【分析】 由全等三角形的判定定理 得 对应角相等: A= E 【解答】 证明:如图, 在 , A= E 【点评】 本题考查了全等三角形的判定与性质全等三角形的判定是结合全等三角形的性质
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西安电子科技大学毕业论文答辩专用模板
- 企业数据权益纠纷趋势研究报告2025
- 践行教育教学反思与改进策略的小学教师日常试题及答案
- 2025年碱式硫酸铬项目建议书
- 2025年中国彩画市场调查研究报告
- 2025年中国多功能电动套丝机市场调查研究报告
- 2025年中国垫带市场调查研究报告
- 2025年中国周期式搅拌球磨机市场调查研究报告
- 2025年中国双黄胶带市场调查研究报告
- 2025年中国印花真丝围巾市场调查研究报告
- GA/T 1280-2024银行自助设备安全性规范
- 2024年智能地锁安装与维护协议2篇
- 吉林省安全员-C证考试(专职安全员)题库及答案
- 一带一路对国际贸易影响-洞察分析
- 休闲农业与乡村旅游规划
- 2025届江苏省常州市高级中学高三第二次模拟考试语文试卷含解析
- 国企数字化转型解读及赋能zzw
- 2024中国华电集团限公司校招+社招高频难、易错点练习500题附带答案详解
- 博士学位论文答辩决议模板分享
- 光伏电站施工创优规划方案
- 【米酒酿造工艺的优化探析(论文)6500字】
评论
0/150
提交评论