高中数学第二章平面解析几何初步2.2直线的方程2.2.4点到直线的距离课件新人教B版必修2.ppt_第1页
高中数学第二章平面解析几何初步2.2直线的方程2.2.4点到直线的距离课件新人教B版必修2.ppt_第2页
高中数学第二章平面解析几何初步2.2直线的方程2.2.4点到直线的距离课件新人教B版必修2.ppt_第3页
高中数学第二章平面解析几何初步2.2直线的方程2.2.4点到直线的距离课件新人教B版必修2.ppt_第4页
高中数学第二章平面解析几何初步2.2直线的方程2.2.4点到直线的距离课件新人教B版必修2.ppt_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2 2 4点到直线的距离 1 掌握点到直线的距离公式 会求点到直线的距离和两平行线间的距离 2 会利用距离公式解决点关于线对称和线关于线对称的问题 1 2 3 1 点到直线的距离公式已知点P x1 y1 直线l的方程 Ax By C 0 则点P到l的距离 归纳总结1 点到直线的距离是直线上的点与直线外一点的连线的最短距离 这是从运动的观点来看 2 点到直线的距离公式只与直线一般式方程的系数有关 所以公式适用于所有的直线 使用点到直线的距离公式的前提条件是 把直线方程化为一般式方程 1 2 3 做一做1 1 点P 2 3 到直线l x 2y 1 0的距离为 做一做1 2 若点P m 3 到直线4x 3y 1 0的距离为4 则m 答案 7或 3 1 2 3 2 点到几种特殊直线的距离 1 点P x0 y0 到x轴的距离d y0 2 点P x0 y0 到y轴的距离d x0 3 点P x0 y0 到与x轴平行的直线y a的距离d y0 a 4 点P x0 y0 到与y轴平行的直线x B的距离d x0 B 做一做2 点P 2 6 到直线y 5的距离为 到x 9的距离为 答案 17 1 2 3 3 两平行直线间的距离公式设直线l1 l2的方程分别为Ax By C1 0 Ax By C2 0 其中 做一做3 直线x y 2 0与直线x y 1 0的距离是 答案 D 题型一 题型二 题型三 题型四 例1 求下列各点到相应各直线的距离 1 点A 1 2 直线l1 2x y 10 0 2 点B 2 3 直线l2 3y 4 5 点E 4 2 直线l5 3x 4y 20 0 分析 可将直线方程化为一般式 套用点到直线的距离公式求解 对于 2 3 等特殊直线 也可用简化的距离公式计算 题型一 题型二 题型三 题型四 题型一 题型二 题型三 题型四 反思求点到直线的距离时 注意以下几点 1 若直线方程不是一般式 应先将其化为一般式 2 如果所给直线是与坐标轴平行或垂直的直线 这时可套用点到直线的距离公式求解 也可利用简化的公式求解 3 点在直线上时 也可套用公式求点到直线的距离 当然距离肯定等于0 题型一 题型二 题型三 题型四 变式训练1 若点 2 2 到直线3x 4y m 0的距离为4 求m的值 分析 直接根据点到直线的距离公式列方程求解 解 由点 2 2 到直线3x 4y m 0的距离为4 解得m 18或 22 因此 m的值为18或 22 题型一 题型二 题型三 题型四 分析 由l1与l2平行设出l1的方程后根据平行线间的距离公式求解 解 因为l1 l2 所以可设l1的方程为x y c 0 所以c 1或c 3 从而l1的方程为x y 1 0或x y 3 0 题型一 题型二 题型三 题型四 反思求平行线之间的距离时 一定注意把两直线方程中x y项的相应系数化为相同值 否则 会使结果出错 题型一 题型二 题型三 题型四 变式训练2 1 求直线l1 24x 10y 5 0与l2 12x 5y 4 0之间的距离 2 求与直线3x 4y 20 0平行且距离为3的直线的方程 题型一 题型二 题型三 题型四 例3 直线4x 3y 12 0与x轴 y轴分别交于点A B 1 求 BAO的平分线所在的直线的方程 2 求点O到 BAO的平分线的距离 分析 1 利用角平分线上的点到角两边的距离相等列方程 2 利用点到直线的距离公式直接求解 题型一 题型二 题型三 题型四 解 1 因为直线4x 3y 12 0与x轴 y轴分别交于A B两点 所以令x 0得y 4 令y 0 得x 3 即A 3 0 B 0 4 由题图可知 BAO为锐角 所以 BAO的平分线所在直线的倾斜角为钝角 其斜率为负值 设点P x y 为 BAO的平分线上任意一点 则点P到直线OA的距离为 y 点P到直线AB的距离为 整理 得2x y 6 0或x 2y 3 0 因为 BAO的平分线所在直线的斜率为负值 所以 BAO的平分线所在直线的方程为x 2y 3 0 题型一 题型二 题型三 题型四 反思要注意结合图示对第 1 小题的结果进行检验 不然会出现增解现象 题型一 题型二 题型三 题型四 变式训练3 两条直线l1 x y 2 0与l2 7x y 4 0相交成四个角 则这些角的平分线所在的直线的方程为 答案 6x 2y 3 0 x 3y 7 0 题型一 题型二 题型三 题型四 例4 已知正方形的中心为G 1 0 一边所在直线的方程为x 3y 5 0 求其他三边所在直线的方程 分析 可从另外三条边与已知边的位置关系以及中心G到另外三边的距离等于其到已知边的距离这两个方面入手求解另外三边所在直线的方程 即 C1 1 6 解得C1 5 舍去 或C1 7 故与已知边平行的直线方程为x 3y 7 0 题型一 题型二 题型三 题型四 即 C2 3 6 解得C2 9或C2 3 所以正方形另两边所在直线的方程为3x y 9 0和3x y 3 0 综上所述 正方形其他三边所在直线的方程分别为x 3y 7 0 3x y 9 0 3x y 3 0 反思在正方形中一定要注重对称性及平行 垂直的利用 另外 要注意总结设直线方程形式的技巧 题型一 题型二 题型三 题型四 变式训练4 直线2x 3y 6 0关于点P 1 1 对称的直线方程为 A 3x 2y 6 0B 2x 3y 7 0C 3x 2y 12 0D 2x 3y 8 0 解析 设直线2x 3y 6 0关于点P对称的直线为l 则l与2x 3y 6 0平行 且点P到这两条直线的距离相等 解得d 6或d 8 d 6舍去 故l的方程为2x 3y 8 0 答案 D 题型一 题型二 题型三 题型四 易错点 忽视斜率不存在的直线致错 例5 求经过点P 3 5 且与原点距离等于3的直线方程 错解 设所求直线方程为y 5 k x 3 整理 得kx y 3k 5 0 题型一 题型二 题型三 题型四 错因分析 没有考虑斜率不存在时的情况 用点斜式设直线方程时 必须先弄清斜率是否存在 否则可能丢解 正解 当直线的斜率存在时 设所求直线方程为y 5 k x 3 整理 得kx y 3k 5 0 1 2 3 4 5 6 1 点 1 1 到直线x y 1 0的距离是 答案 C 1 2 3 4 5 6 2 点P x y 在直线x y 4 0上 O为坐标原点 则点O与点P之间的距离的最小值为 答案 B 1 2 3 4 5 6 3 过点 1 3 且与原点的距离为1的直线共有 A 3条B 2条C 1条D 0条 答案 B 1 2 3 4 5 6 4 直线2x y 1 0与直线6x 3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论