




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第七章立体几何初步深研高考备考导航为教师授课、学生学习提供丰富备考资源五年考情考点2016年2015年2014年2013年2012年三视图、空间几何体的表面积和体积全国卷T7全国卷T4全国卷T7全国卷T10全国卷T11全国卷T6全国卷T11全国卷T6全国卷T10全国卷T8全国卷T6全国卷T7全国卷T11全国卷T15全国卷T9全国卷T15全国卷T7全国卷T8点、线、面的位置关系全国卷T11全国卷T18全国卷T19全国卷T19全国卷T18全国卷T19全国卷T19全国卷T18全国卷T19全国卷T18全国卷T19重点关注综合近5年全国卷高考试题,我们发现高考命题在本章呈现以下规律:1从考查题型、题量两个方面来看:一般是12个客观题,一个解答题;从考查分值看,该部分大约占1722分2从考查知识点看:主要考查简单几何体的三视图及其表面积、体积、空间中线线、线面、面面的平行和垂直的关系,突出对空间想象能力、逻辑推理能力和正确迅速运算的能力,以及转化与化归思想的考查3从命题思路上看:(1)空间几何体的三视图及其表面积、体积的计算,主要以小题的形式考查(2)空间点、线、面之间位置关系的判断与证明,特别是线线、线面、面面的平行与垂直,主要以解答题的形式考查(3)根据近5年的高考试题,我们发现两大热点:空间几何体的三视图及其表面积、体积的计算,空间位置关系有关命题的辨别空间平行、垂直关系的证明导学心语根据近5年全国卷高考命题特点和规律,复习本章时,要注意以下几个方面:1深刻理解以下概念、性质、定理及公式简单几何体的结构特征;三视图及其表面积、体积公式;三个公理及线面、面面平行和垂直的八个判定定理与性质定理2抓住空间位置关系中平行、垂直这一核心内容强化训练,不仅要注意平行与平行、垂直与垂直间的转化,而且要重视平行与垂直间的化归转化在推理证明中加强规范严谨性训练,避免因条件缺失、步骤混乱导致失分3把握命题的新动向,在保持命题连续性的同时,力求创新,空间的折叠与探索开放性问题的命题趋向值得重视第一节空间几何体的结构及其三视图和直观图考纲传真1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式1简单多面体的结构特征(1)棱柱的侧棱都平行且相等,上下底面是全等的多边形;(2)棱锥的底面是任意多边形,侧面是有一个公共点的三角形;(3)棱台可由平行于棱锥底面的平面截棱锥得到,其上下底面是相似多边形2旋转体的形成几何体旋转图形旋转轴圆柱矩形任一边所在的直线圆锥直角三角形任一直角边所在的直线圆台直角梯形垂直于底边的腰所在的直线球半圆直径所在的直线3.空间几何体的三视图(1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图(2)三视图的画法在画三视图时,重叠的线只画一条,挡住的线要画成虚线三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察到的几何体的正投影图4空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x轴,y轴的夹角为45或135,z轴与x轴和y轴所在平面垂直(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度变为原来的一半1(思考辨析)判断下列结论的正误(正确的打“”,错误的打“”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥()(3)用斜二测画法画水平放置的A时,若A的两边分别平行于x轴和y轴,且A90,则在直观图中,A90.()(4)正方体、球、圆锥各自的三视图中,三视图均相同()答案(1)(2)(3)(4)2(教材改编)如图711,长方体ABCDABCD中被截去一部分,其中EHAD,则剩下的几何体是()图711A棱台B四棱柱C五棱柱D简单组合体C由几何体的结构特征,剩下的几何体为五棱柱3(2014全国卷)如图712,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()图712A三棱锥B三棱柱C四棱锥D四棱柱B由题知,该几何体的三视图为一个三角形,两个四边形,经分析可知该几何体为如图所示的三棱柱4(2016天津高考)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图713所示,则该几何体的侧(左)视图为()图713B由几何体的正视图和俯视图可知该几何体为图,故其侧(左)视图为图.5以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于_2由题意得圆柱的底面半径r1,母线l1,所以圆柱的侧面积S2rl2.空间几何体的结构特征(1)下列说法正确的是() 【导学号:31222239】A有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B四棱锥的四个侧面都可以是直角三角形C有两个平面互相平行,其余各面都是梯形的多面体是棱台D棱台的各侧棱延长后不一定交于一点(2)以下命题:以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥;以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;圆柱、圆锥、圆台的底面都是圆面;一个平面截圆锥,得到一个圆锥和一个圆台其中正确命题的个数为()A0B1C2D3(1)B(2)B(1)如图所示,可知A错如图,当PD底面ABCD,且四边形ABCD为矩形时,则四个侧面均为直角三角形,B正确根据棱台的定义,可知C,D不正确(2)由圆锥、圆台、圆柱的定义可知错误,正确对于命题,只有平行于圆锥底面的平面截圆锥,才能得到一个圆锥和一个圆台,不正确规律方法1.关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一个反例即可2圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系3因为棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略变式训练1下列结论正确的是()A各个面都是三角形的几何体是三棱锥B夹在圆柱的两个平行截面间的几何体还是一个旋转体C棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D圆锥的顶点与底面圆周上任意一点的连线都是母线D如图知,A不正确如图,两个平行平面与底面不平行时,截得的几何体不是旋转体,则B不正确C错误若六棱锥的所有棱长都相等,则底面多边形是正六边形由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长由母线的概念知,选项D正确空间几何体的三视图角度1由空间几何体的直观图判断三视图一几何体的直观图如图714,下列给出的四个俯视图中正确的是()ABCD图714B该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左右两边距离相等,因此选项B适合角度2已知三视图,判断几何体(1)某四棱锥的三视图如图715所示,该四棱锥最长棱棱长为()图715A1B.C.D2(2)(2016全国卷)如图716是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()图716A20B24C28D32(1)C(2)C(1)由三视图知,该四棱锥的直观图如图所示,其中PA平面ABCD.又PAADAB1,且底面ABCD是正方形,所以PC为最长棱连接AC,则PC.(2)由三视图可知圆柱的底面直径为4,母线长(高)为4,所以圆柱的侧面积为22416,底面积为224;圆锥的底面直径为4,高为2,所以圆锥的母线长为4,所以圆锥的侧面积为248.所以该几何体的表面积为S164828.规律方法1.由实物图画三视图或判断选择三视图,按照“正侧一样高,正俯一样长,俯侧一样宽”的特点确认2根据三视图还原几何体(1)对柱、锥、台、球的三视图要熟悉(2)明确三视图的形成原理,并能结合空间想象将三视图还原为直观图(3)根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据易错警示:对于简单组合体的三视图,应注意它们的交线的位置,区分好实线和虚线的不同.空间几何体的直观图(2017桂林模拟)已知正三角形ABC的边长为a,那么ABC的平面直观图ABC的面积为() 【导学号:31222240】A.a2 B.a2 C.a2 D.a2D如图所示的实际图形和直观图,由可知,ABABa,OCOCa,在图中作CDAB于D,则CDOCa,所以SABCABCDaaa2.规律方法1.画几何体的直观图一般采用斜二测画法,其规则可以用“斜”(两坐标轴成45或135)和“二测”(平行于y轴的线段长度减半,平行于x轴和z轴的线段长度不变)来掌握对直观图的考查有两个方向,一是已知原图形求直观图的相关量,二是已知直观图求原图形中的相关量2按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系:S直观图S原图形变式训练2已知等腰梯形ABCD,上底CD1,腰ADCB,下底AB3,以下底所在直线为x轴,则由斜二测画法画出的直观图ABCD的面积为_如图所示:因为OE1,所以OE,EF,则直观图ABCD的面积S.思想与方法1画三视图的三个原则:(1)画法规则:“长对正,宽相等,高平齐”(2)摆放规则:侧视图在正视图的右侧,俯视图在正视图的正下方(3)实虚线的画法规则:可见轮廓线和棱用实线画出,不可见线和棱用虚线画出2棱台和圆台是分别用平行于棱锥和圆锥的底面的平面截棱锥和圆锥后得到的,所以在解决棱台和圆台的相关问题时,常“还台为锥”,体现了转化的数学思想易错与防范1确定正视、侧视、俯视的方向,观察同一物体方向不同,所画的三视图也不同2对于简单几何体的组合体,在画其三视图时首先应分清它是由哪些简单几何体组成的,然后再画其三视图,易忽视交线的位置,实线与虚线的不同致误课时分层训练(三十八)空间几何体的结构及其三视图和直观图A组基础达标(建议用时:30分钟)一、选择题1关于空间几何体的结构特征,下列说法不正确的是()A棱柱的侧棱长都相等B棱锥的侧棱长都相等C三棱台的上、下底面是相似三角形D有的棱台的侧棱长都相等B根据棱锥的结构特征知,棱锥的侧棱长不一定都相等2某空间几何体的正视图是三角形,则该几何体不可能是()A圆柱B圆锥C四面体D三棱柱A由三视图知识知圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形3(2017云南玉溪一中月考)将长方体截去一个四棱锥后得到的几何体如图717所示,则该几何体的侧视图为()图717AB C DD易知侧视图的投影面为矩形又AF的投影线为虚线,该几何体的侧视图为选项D.4一个几何体的三视图如图718所示,则该几何体的表面积为() 【导学号:31222241】图718A3B4C24D34D由几何体的三视图可知,该几何体为半圆柱,直观图如图所示表面积为222121243.5(2015全国卷)一个正方体被一个平面截去一部分后,剩余部分的三视图如图719,则截去部分体积与剩余部分体积的比值为()图719A.B.C.D.D由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥设正方体的棱长为1,则三棱锥的体积为V1111,剩余部分的体积V213.所以,故选D.二、填空题6(2017福建龙岩联考)一水平放置的平面四边形OABC,用斜二测画法画出它的直观图OABC如图7110所示,此直观图恰好是一个边长为1的正方形,则原平面四边形OABC的面积为_ 【导学号:31222242】图71102因为直观图的面积是原图形面积的倍,且直观图的面积为1,所以原图形的面积为2.7如图7111所示,在正方体ABCDA1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥PABC的正视图与侧视图的面积的比值为_. 【导学号:31222243】图71111三棱锥PABC的正视图与侧视图为底边和高均相等的三角形,故它们的面积相等,面积比值为1.8某三棱锥的三视图如图7112所示,则该三棱锥最长棱的棱长为_图71122由题中三视图可知,三棱锥的直观图如图所示,其中PA平面ABC,M为AC的中点,且BMAC,故该三棱锥的最长棱为PC.在RtPAC中,PC2.三、解答题9某几何体的三视图如图7113所示图7113(1)判断该几何体是什么几何体?(2)画出该几何体的直观图解(1)该几何体是一个正方体切掉两个圆柱后的几何体.5分(2)直观图如图所示.12分10如图7114,在四棱锥PABCD中,底面为正方形,PC与底面ABCD垂直,如图7115为该四棱锥的正视图和侧视图,它们是腰长为6 cm的全等的等腰直角三角形图7114图7115(1)根据图中所给的正视图、侧视图,画出相应的俯视图,并求出该俯视图的面积;(2)求PA.解(1)该四棱锥的俯视图为(内含对角线)边长为6 cm的正方形,如图,其面积为36 cm2.5分(2)由侧视图可求得PD6.8分由正视图可知AD6,且ADPD,所以在RtAPD中,PA6 cm.12分B组能力提升(建议用时:15分钟)1在如图7116所示的空间直角坐标系Oxyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号的四个图,则该四面体的正视图和俯视图分别为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025装修合同北京范本
- 2025标准房屋买卖合同
- 2025房产交易补充合同条款
- 2025有关代理参展订货合同模板
- 店铺拆除承揽合同范本
- 地皮出售协议合同范本
- 2017林地流转合同范本
- 广告产品购销合同范本
- 工地工程的合同范本
- 2025济南市肉鸡委托饲养合同书
- 足少阴肾经试题及答案
- 眼科OCT基础知识课件
- 2025-2030中国还原铁粉行业市场发展趋势与前景展望战略研究报告
- 2024年《防治煤与瓦斯突出细则》培训课件
- 经皮肾术后护理试题及答案
- 河南航空港发展投资集团招聘笔试真题2024
- 烤烟种植与管理技术精粹
- 财政投资评审咨询服务预算和结算评审项目投标文件(技术方案)
- 《半年度工作总结与规划》课件
- 《稻田养鸭技术》课件
- 污水处理设施运维服务投标方案(技术标)
评论
0/150
提交评论